783 research outputs found
Another one grinds the dust: variability of the planetary debris disc at the white dwarf SDSS J104341.53+085558.2
We report 9 yr of optical spectroscopy of the metal-polluted white dwarf SDSS J104341.53+085558.2, which presents morphological variations of the line profiles of the 8600 Å Ca II triplet emission from the gaseous component of its debris disc. Similar changes in the shape of the Ca II triplet have also been observed in two other systems that host a gaseous disc, and are likely related to the same mechanism. We report the Mg, Si, and Ca abundances of the debris detected in the photosphere of SDSS J1043+0855, place upper limits on O and Fe, and derive an accretion rate of (2.5–12) × 108 g s−1, consistent with those found in other systems with detected debris discs. The Mg/Si ratio and the upper limit on the Fe/Si ratio of the accreted material broadly agree with those found for the crust of the Earth. We also review the range of variability observed among white dwarfs with planetary debris discs
Radial-velocity measurements of subdwarf B stars
Subdwarf B (sdB) stars are hot, subluminous stars which are thought to be core-helium burning with thin hydrogen envelopes. The mechanism by which these stars lose their envelopes has been controversial, but it has been argued that binary star interaction is the main cause. Over the past decade we have conducted a radial-velocity study of a large sample of sdB stars, and have shown that a significant fraction of the field sdB population exists in binary systems. In 2002 and 2003, we published 23 new binary sdB stars and the definitions of their orbits. Here, we present the continuation of this project. We give the binary parameters for 28 systems, 18 of which are new.We also present our radial-velocity measurements of a further 108 sdBs. Of these, 88 show no significant evidence of orbital motion. The remaining 20 do show radialvelocity variations, and so are good candidates for further study. Based on these results, our best estimate for the binary fraction in the sdB population is 46–56 per cent. This is a lower bound since the radial-velocity variations of very long period systems would be difficult to detect over the baseline of our programme, and for some sources we have only a small number of measurements
Non-lethal control of the cariogenic potential of an agent-based model for dental plaque
Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments
In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries
Dental caries is the most prevalent infection globally and a substantial economic burden in developed countries. Dietary sugars are the main risk factor, and drive increased proportions of acid-producing and acid-tolerating (aciduric) bacterial species within dental bio lms. Recent longitudinal studies have suggested that caries is most strongly correlated with total sugar intake, contrasting with the prevailing view that intake frequency is the primary determinant. To explore this possibility, we employed a computational model for supragingival plaque to systematically sample combinations of sugar frequency and total amount, allowing their independent contributions on the ratio of aciduric (i.e. cariogenic) to non-aciduric bacteria to be unambiguously determined. Sugar frequency was found to be irrelevant for either very high or very low daily total amounts as the simulated bio lm was predicted to be always or never cariogenic, respectively. Frequency was a determining factor for intermediate total amounts of sugar, including the estimated average human consumption. An increased risk of caries (i.e. high prevalence of aciduric/non-aciduric species) was predicted for high intake frequencies. Thus, both total amount and frequency of sugar intake may combine to in uence plaque cariogenicity. These ndings could be employed to support public guidance for dietary change, leading to improved oral healthcare
Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA
Testing the white dwarf mass-radius relationship with eclipsing binaries
We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass–radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon–oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon–oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10−5 ≥ MH/MWD ≥ 10−4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution
High-speed photometry of Gaia14aae: an eclipsing AMCVn that challenges formation models
AM CVn-type systems are ultracompact, hydrogen-deficient accreting binaries with degenerate or semidegenerate donors. The evolutionary history of these systems can be explored by constraining the properties of their donor stars. We present high-speed photometry of Gaia14aae, an AM CVn with a binary period of 49. 7 min and the first AM CVn in which the central white dwarf is fully eclipsed by the donor star. Modelling of the light curves of this system allows for the most precise measurement to date of the donor mass of an AM CVn, and relies only on geometric and well-tested physical assumptions. We find a mass ratio q = M2/M1 = 0.0287 ± 0.0020 and masses M1 = 0.87 ± 0.02 M⊙ and M2 = 0.0250 ± 0.0013 M⊙. We compare these properties to the three proposed channels for AM CVn formation. Our measured donor mass and radius do not fit with the contraction that is predicted for AM CVn donors descended from white dwarfs or helium stars at long orbital periods. The donor properties we measure fall in a region of parameter space in which systems evolved from hydrogen-dominated cataclysmic variables are expected, but such systems should show spectroscopic hydrogen, which is not seen in Gaia14aae. The evolutionary history of this system is therefore not clear. We consider a helium-burning star or an evolved cataclysmic variable to be the most likely progenitors, but both models require additional processes and/or fine-tuning to fit the data. Additionally, we calculate an updated ephemeris which corrects for an anomalous time measurement in the previously published ephemeris
3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy
The processes of life take place in multiple dimensions, but imaging
these processes in even three dimensions is challenging. Here, we
describe a workflow for 3D correlative light and electron microscopy
(CLEM) of cell monolayers using fluorescence microscopy to identify
and follow biological events, combined with serial blockface scanning
electron microscopy to analyse the underlying ultrastructure. The
workflow encompasses all steps from cell culture to sample
processing, imaging strategy, and 3D image processing and
analysis. We demonstrate successful application of the workflow to
three studies, each aiming to better understand complex and dynamic
biological processes, including bacterial and viral infections of
cultured cells and formation of entotic cell-in-cell structures
commonly observed in tumours. Our workflow revealed new insight
into the replicative niche of Mycobacterium tuberculosis in primary
human lymphatic endothelial cells, HIV-1 in human monocytederived
macrophages, and the composition of the entotic vacuole.
The broad application of this 3D CLEM technique will make it a useful
addition to the correlative imaging toolbox for biomedical research
The population of close double white dwarfs in the Galaxy
We present a new model for the Galactic population of close double white
dwarfs. The model accounts for the suggestion of the avoidance of a substantial
spiral-in during mass transfer between a giant and a main-sequence star of
comparable mass and for detailed cooling models. It agrees well with the
observations of the local sample of white dwarfs if the initial binary fraction
is close to 50% and an ad hoc assumption is made that white dwarfs with mass
less than about 0.3 solar mass cool faster than the models suggest. About 1000
white dwarfs brighter than V=15 have to be surveyed for detection of a pair
which has total mass greater than the Chandrasekhar mass and will merge within
10 Gyr.Comment: 15 pages, 7 figures, to appear in Proc. ``The influence of binaries
on stellar population studies'', Brussels, August 2000 (Kluwer, D. Vanbeveren
ed.
Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
- …
