480 research outputs found

    Baltica‐Siberia connection challenges traditional tectonics notions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97201/1/eost10342.pd

    Microbial colonization and alteration of basaltic glass

    No full text
    International audienceMicroorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004). The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM), and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE) in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group of prosthecate oligotrophic organisms; the genus Rhizobium, N2 fixating heterotrophs; and the genus Sphingomonas, which are known as bio-film producing oligotrophs. Although no bioalteration of glass could be confirmed from our experiments, oligotrophic surface adhering bacteria such as the Sphingomonas sp. and Hyphomicrobium sp. may nevertheless be important for bioalteration in nature, due to their firm attachment to glass surfaces, and their potential for biofilm production

    Constraining Absolute Plate Motions Since the Triassic

    Get PDF
    The absolute motion of tectonic plates since Pangea can be derived from observations of hotspot trails, paleomagnetism, or seismic tomography. However, fitting observations is typically carried out in isolation without consideration for the fit to unused data or whether the resulting plate motions are geodynamically plausible. Through the joint evaluation of global hotspot track observations (for times <80 Ma), first‐order estimates of net lithospheric rotation (NLR), and parameter estimation for paleo–trench migration (TM), we present a suite of geodynamically consistent, data‐optimized global absolute reference frames from 220 Ma to the present. Each absolute plate motion (APM) model was evaluated against six published APM models, together incorporating the full range of primary data constraints. Model performance for published and new models was quantified through a standard statistical analyses using three key diagnostic global metrics: root‐mean square plate velocities, NLR characteristics, and TM behavior. Additionally, models were assessed for consistency with published global paleomagnetic data and for ages <80 Ma for predicted relative hotspot motion, track geometry, and time dependence. Optimized APM models demonstrated significantly improved global fit with geological and geophysical observations while performing consistently with geodynamic constraints. Critically, APM models derived by limiting average rates of NLR to ~0.05°/Myr and absolute TM velocities to ~27‐mm/year fit geological observations including hotspot tracks. This suggests that this range of NLR and TM estimates may be appropriate for Earth over the last 220 Myr, providing a key step toward the practical integration of numerical geodynamics into plate tectonic reconstructions

    Сучасний стан і проблеми управління залізничним транспортом України

    Get PDF
    Проаналізовано стан і тенденції розвитку залізничного транспорту. Розглянуті основні завдання державного регулювання галузі.Проанализировано состояние и тенденции развития железнодорожного транспорта. Рассмотренны основные задания государственного регулирования отрасли.The condition and trends of railway transport has been anilized. The main tasks of state regulation of railway transport has been considereted

    Study protocol for a randomized controlled trial of supportive parents – coping kids (SPARCK)—a transdiagnostic and personalized parent training intervention to prevent childhood mental health problems

    Get PDF
    Background: To meet the scientific and political call for effective prevention of child and youth mental health problems and associated long-term consequences, we have co-created, tested, and optimized a transdiagnostic preventive parent-training intervention, Supportive parents – coping kids (SPARCK), together with and for the municipal preventive frontline services. The target group of SPARCK is parents of children between 4 and 12 years who display symptoms of anxiety, depression, and/or behavioral problems, that is, indicated prevention. The intervention consists of components from various empirically supported interventions representing different theorical models on parent–child interactions and child behavior and psychopathology (i.e., behavioral management interventions, attachment theory, emotion socialization theory, cognitive-behavioral therapy, and family accommodation intervention). The content and target strategies of SPARCK are tailored to the needs of the families and children, and the manual suggests how the target strategies may be personalized and combined throughout the maximum 12 sessions of the intervention. The aim of this project is to investigate the effectiveness of SPARCK on child symptoms, parenting practices, and parent and child stress hormone levels, in addition to later use of specialized services compared with usual care (UC; eg. active comparison group). Methods: We describe a randomized controlled effectiveness trial in the frontline services of child welfare, health, school health and school psychological counselling services in 24 Norwegian municipalities. It is a two-armed parallel group randomized controlled effectiveness and superiority trial with 252 families randomly allocated to SPARCK or UC. Assessment of key variables will be conducted at pre-, post-, and six-month follow-up. Discussion: The current study will contribute with knowledge on potential effects of a preventive transdiagnostic parent-training intervention when compared with UC. Our primary objective is to innovate frontline services with a usable, flexible, and effective intervention for prevention of childhood mental health problems to promote equity in access to care for families and children across a heterogeneous service landscape characterized by variations in available resources, personnel, and end user symptomatology. Trial registration: ClinicalTrials.gov ID: NTCT0580052

    Bacterial activity in cystic fibrosis lung infections

    Get PDF
    BACKGROUND: Chronic lung infections are the primary cause of morbidity and mortality in Cystic Fibrosis (CF) patients. Recent molecular biological based studies have identified a surprisingly wide range of hitherto unreported bacterial species in the lungs of CF patients. The aim of this study was to determine whether the species present were active and, as such, worthy of further investigation as potential pathogens. METHODS: Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiles were generated from PCR products amplified from 16S rDNA and Reverse Transcription Terminal Restriction Fragment Length Polymorphism (RT-T-RFLP) profiles, a marker of metabolic activity, were generated from PCR products amplified from 16S rRNA, both extracted from the same CF sputum sample. To test the level of activity of these bacteria, T-RFLP profiles were compared to RT-T-RFLP profiles. RESULTS: Samples from 17 individuals were studied. Parallel analyses identified a total of 706 individual T-RF and RT-T-RF bands in this sample set. 323 bands were detected by T-RFLP and 383 bands were detected by RT-T-RFLP (statistically significant; P ≤ 0.001). For the group as a whole, 145 bands were detected in a T-RFLP profile alone, suggesting metabolically inactive bacteria. 205 bands were detected in an RT-T-RFLP profile alone and 178 bands were detected in both, suggesting a significant degree of metabolic activity. Although Pseudomonas aeruginosa was present and active in many patients, a low occurrence of other species traditionally considered to be key CF pathogens was detected. T-RFLP profiles obtained for induced sputum samples provided by healthy individuals without CF formed a separate cluster indicating a low level of similarity to those from CF patients. CONCLUSION: These results indicate that a high proportion of the bacterial species detected in the sputum from all of the CF patients in the study are active. The widespread activity of bacterial species in these samples emphasizes the potential importance of these previously unrecognized species within the CF lung

    Structure and Evolution of Streptomyces Interaction Networks in Soil and In Silico

    Get PDF
    Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated from several individual grains of soil. We acquired more than 10,000 time-lapse movies of colony development of each isolate on media containing compounds produced by each of the other isolates. We observed a rich set of such sender-receiver interactions, including inhibition and promotion of growth and aerial mycelium formation. The probability that two random isolates interact is balanced; it is neither close to zero nor one. The interactions are not random: the distribution of the number of interactions per sender is bimodal and there is enrichment for reciprocity—if strain A inhibits or promotes B, it is likely that B also inhibits or promotes A. Such reciprocity is further enriched in strains derived from the same soil grain, suggesting that it may be a property of coexisting communities. Interactions appear to evolve rapidly: isolates with identical 16S rRNA sequences can have very different interaction patterns. A simple eco-evolutionary model of bacteria interacting through antibiotic production shows how fast evolution of production and resistance can lead to the observed statistical properties of the network. In the model, communities are evolutionarily unstable—they are constantly being invaded by strains with new sets of interactions. This combination of experimental and theoretical observations suggests that diverse Streptomyces communities do not represent a stable ecological state but an intrinsically dynamic eco-evolutionary phenomenon

    Finding the Needles in the Metagenome Haystack

    Get PDF
    In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth’s diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and sequencing of these genomes. This approach allows microbial ecologists to access and study the full range of microbial diversity, regardless of our ability to culture organisms, and provides an unprecedented access to the breadth of natural products that these genomes encode. However, there is no way that the mere collection of sequences, no matter how expansive, can provide full coverage of the complex world of microbial metagenomes within the foreseeable future. Furthermore, although it is possible to fish out highly informative and useful genes from the sea of gene diversity in the environment, this can be a highly tedious and inefficient procedure. Microbial ecologists must be clever in their pursuit of ecologically relevant, valuable, and niche-defining genomic information within the vast haystack of microbial diversity. In this report, we seek to describe advances and prospects that will help microbial ecologists glean more knowledge from investigations into metagenomes. These include technological advances in sequencing and cloning methodologies, as well as improvements in annotation and comparative sequence analysis. More significant, however, will be ways to focus in on various subsets of the metagenome that may be of particular relevance, either by limiting the target community under study or improving the focus or speed of screening procedures. Lastly, given the cost and infrastructure necessary for large metagenome projects, and the almost inexhaustible amount of data they can produce, trends toward broader use of metagenome data across the research community coupled with the needed investment in bioinformatics infrastructure devoted to metagenomics will no doubt further increase the value of metagenomic studies in various environments
    corecore