470 research outputs found

    Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate

    Get PDF
    1. Climate change is driving range contractions and local population extinctions across the globe. When this affects ecosystem engineers the vacant niches left behind are likely to alter the wider ecosystem unless a similar species can fulfil them. 2. Here, we explore the stress physiology of two coexisting kelps undergoing opposing range shifts in the Northeast Atlantic and discuss what differences in stress physiology may mean for future niche filling. 3. We used chlorophyll florescence (Fv/Fm) and differentiation of the heat shock response (HSR) to determine the capacity of the expanding kelp, Laminaria ochroleuca, to move into the higher shore position of the retreating kelp, Laminaria digitata. We applied both single and consecutive exposures to immersed and emersed high and low temperature treatments, replicating low tide exposures experienced in summer and winter. 4. No interspecific differences in HSR were observed which was surprising given the species? different biogeographic distributions. However, chlorophyll florescence revealed clear differences between species with L. ochroleuca better equipped to tolerate high immersed temperatures but showed little capacity to tolerate frosts or high emersion temperatures. 5. Many patterns observed were only apparent after consecutive exposures. Such cumulative effects have largely been overlooked in tolerance experiments on intertidal organisms despite being more representative of the stress experienced in natural habitats. We therefore suggest future experiments incorporate consecutive stress into their design. 6. Climate change is predicted to result in fewer ground frosts and increased summer temperatures. Therefore, L. ochroleuca may be released from its summer cold limit in winter but still be prevented from moving up the shore due to desiccation in the summer. Laminaria ochroleuca will, however, likely be able to move into tidal pools. Therefore, only partial niche filling by L. ochroleuca will be possible in this system as climate change advancespublishersversionPeer reviewe

    The proteomic response in the crustacean molting gland of land crab Gecarcinus lateralis in response to artificially induced molting throughout its molting cycle.

    Get PDF
    Molting in crustaceans is a highly complex physiological process involving negative regulation by two paired endocrine glands, the X-organ/sinus gland complex (XO/SG) and the Y-organ (YO). The XO/SG complex is responsible for making molt-inhibiting hormone (MIH) which negatively regulates synthesis of molting hormones (ecdysteroids) by the YO. Eyestalk ablation (ESA) removes the source of MIH and provides an experimental means to manipulate and induce molting, although the physiological effects of ESA on the YO have not been fully characterized. Analysis of gene expression in the XOs and YOs has lead to the development of a proposed molecular signaling pathway which regulates ecdysteroidogenesis and subsequent molting (ecdysis) in crustaceans. Results presented depict the changes in significantly different protein abundances in the YO over the course of the molting cycle (early, mid and late premolt) in crabs where 5 or more walking legs were lost, termed multiple leg autotomy (MLA). Proteins were characterized using two-dimensional gel electrophoresis and Delta2D software for statistical analysis. Future analysis will determine whether ESA can effectively mimic premolt conditions in the YO compared to the natural molting progression through protein identification by MALDI-TOF mass spectrometry. This will further resolve the metabolic and physiological changes associated with the transitions experienced by the YO throughout the molting stages. Determining the efficacy of ESA as a means to induce molting and determining molecular regulation of crustacean molting has broad economic impacts for crustacean fisheries as industry demands increase

    Movements of House Sparrows Captured at an Experimental Grain Station in Fargo, North Dakota

    Get PDF
    From 2 August through 1 October 1993 we banded and leg flagged 362 house sparrows (126 adults, 236 juveniles) captured in a decoy trap at an experimental grain station on the campus of North Dakota State University, Fargo (NDSU). We documented sightings of leg-flagged birds between 3 August 1993 and 14 December 1994. Over this period, 56 (66%) of the total 76 observations of leg-flagged birds were on the NDSU campus; 21 (28%) of the 76 observations occurred between March and December 1994, a minimum of 5 months after the leg flags were attached and following the 1993-1994 winter. Of the 21 observations in 1994, 16 (76%) occurred on campus. The farthest sighting of a leg-flagged bird was 6.5 km (4 mi.) from the trap site. The data indicated that we captured and marked a localized population. A concerted effort based on trapping could reduce house sparrow damage on the small, experimental plots of cereal grains and sunflower grown at the station

    Surfactant effect in heteroepitaxial growth. The Pb - Co/Cu(111) case

    Full text link
    A MonteCarlo simulations study has been performed in order to study the effect of Pb as surfactant on the initial growth stage of Co/Cu(111). The main characteristics of Co growing over Cu(111) face, i.e. the decorated double layer steps, the multiple layer islands and the pools of vacancies, disappear with the pre-evaporation of a Pb monolayer. Through MC simulations, a full picture of these complex processes is obtained. Co quickly diffuses through the Pb monolayer exchanging place with Cu atoms at the substrate. The exchange process diffusion inhibits the formation of pure Co islands, reducing the surface stress and then the formation of multilayer islands and the pools of vacancies. On the other hand, the random exchange also suppress the nucleation preferential sites generated by Co atoms at Cu steps, responsible of the step decoration.Comment: 4 pages, latex, 2 figures embedded in the tex

    Ab initio molecular dynamics using density based energy functionals: application to ground state geometries of some small clusters

    Get PDF
    The ground state geometries of some small clusters have been obtained via ab initio molecular dynamical simulations by employing density based energy functionals. The approximate kinetic energy functionals that have been employed are the standard Thomas-Fermi (TTF)(T_{TF}) along with the Weizsacker correction TWT_W and a combination F(Ne)TTF+TWF(N_e)T_{TF} + T_W. It is shown that the functional involving F(Ne)F(N_e) gives superior charge densities and bondlengths over the standard functional. Apart from dimers and trimers of Na, Mg, Al, Li, Si, equilibrium geometries for LinAl,n=1,8Li_nAl, n=1,8 and Al13Al_{13} clusters have also been reported. For all the clusters investigated, the method yields the ground state geometries with the correct symmetries with bondlengths within 5\% when compared with the corresponding results obtained via full orbital based Kohn-Sham method. The method is fast and a promising one to study the ground state geometries of large clusters.Comment: 15 pages, 3 PS figure

    Bandgap Change of Carbon Nanotubes: Effect of Small Tensile and Torsional Strain

    Full text link
    We use a simple picture based on the π\pi electron approximation to study the bandgap variation of carbon nanotubes with uniaxial and torsional strain. We find (i) that the magnitude of slope of bandgap versus strain has an almost universal behaviour that depends on the chiral angle, (ii) that the sign of slope depends on the value of (nm)mod3(n-m) \bmod 3 and (iii) a novel change in sign of the slope of bandgap versus uniaxial strain arising from a change in the value of the quantum number corresponding to the minimum bandgap. Four orbital calculations are also presented to show that the π\pi orbital results are valid.Comment: Revised. Method explained in detai

    Thyroid Hormone Promotes Remodeling of Coronary Resistance Vessels

    Get PDF
    Low thyroid hormone (TH) function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3) in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX), were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC)

    Integrated method for quantitative morphometry and oxygen transport modelling in striated muscle

    Get PDF
    Identifying structural limitations in O2 transport is primarily restricted by current methods employed to characterise the nature of physiological remodelling. Inadequate resolution or breadth of available data has impaired development of routine diagnostic protocols and effective therapeutic strategies. Understanding O2 transport within striated muscle faces major challenges, most notably in quantifying how well individual fibres are supplied by the microcirculation, which has necessitated exploring tissue O2 supply using theoretical modelling of diffusive exchange. Having identified capillary domains as a suitable model for the description of local O2 supply, and requiring less computation than numerically calculating the trapping regions that are supplied by each capillary via biophysical transport models, we sought to design a high throughput method for histological analysis. We present an integrated package that identifies optimal protocols for identification of important input elements, processing of digitised images with semi-automated routines, and incorporation of these data into a mathematical modelling framework with computed output visualised as the tissue partial pressure of O2 (PO2) distribution across a biopsy sample. Worked examples are provided using muscle samples from experiments involving rats and humans

    Persistent currents in carbon nanotubes based rings

    Get PDF
    Persistent currents in rings constructed from carbon nanotubes are investigated theoretically. After studying the contribution of finite temperature or quenched disorder on covalent rings, the complexity due to the bundle packing is addressed. The case of interacting nanotori and self-interacting coiled nanotubes are analyzed in details in relation with experiments.Comment: 7 sections, 9 figure
    corecore