354 research outputs found

    Build an Assessment Rubric of Student Creativity in Higher Education

    Full text link
    [EN] Attention to student creativity has triggered a number of educational transformations in higher education. However, widespread measures of creativity in higher education are primary based on norm-referenced assessment, which provide minimal information of student performance against the learning development in creativity. In reponse to the lack of effective measures and criteria to link assessment with instruction in creativity education, this article discusses the process of building an assessment rubric of creativity based on the standards-referenced model. It is intended to help teachers and students better understand the learning objectives related to creativity, as well as to monitor and guide the development of student creativity. Xu, W.; Tognolini, J. (2022). Build an Assessment Rubric of Student Creativity in Higher Education. En 8th International Conference on Higher Education Advances (HEAd'22). Editorial Universitat Politècnica de València. 135-142. https://doi.org/10.4995/HEAd22.2022.1469513514

    TRACKING THE INTERFACE STATES DYNAMICS AT CARBON-BASED NANOSTRUCTURES ON METAL BY NON-LINEAR PHOTOEMISSION SPECTROSCOPY

    Get PDF
    After single-layer graphene isolation in 2004, the scientific community has concentrated its efforts in the investigation of single-atom thin materials, due to their unique electronic properties, not shown by their bulk counterpart. Among this promising class of materials, two-dimensional carbon-based nanostructures have encountered a growing interest in nanotechnology, due to the huge variety of potential applications in which they are involved, from optoelectronics and photonics to energy generation, storage and solar cells. For the industrial realization of these devices a comprehensive understanding of the interaction between 2D carbon nanostructures and metallic substrates is necessary. An excellent tool to accomplish this aim is represented by the study of the electronic properties and dynamics of the states localized at the carbon nanostructures/metal interfacial region, being extremely sensitive to any modification at the surface. The investigation of these unoccupied electronic states has been accomplished applying femtosecond, high intensity laser pulses in the near-UV ranges to photoemission techniques

    Breaking HWQCS: a code-based signature scheme from high weight QC-LDPC codes

    Get PDF
    We analyse HWQCS, a code based signature scheme presented at ICISC 2023, which uses quasi-cyclic low density parity check codes (QC-LDPC). The scheme introduces high Hamming weight errors and signs each message using a fresh ephemeral secret key rather than using only one secret key, so to avoid known attacks on QC-LDPC signature schemes. In this paper, we show that the signatures of HWQCS leak substantial information concerning the ephemeral keys and formally describe this behaviour. Furthermore, we show that for each security level, we can exploit the leakage to efficiently reconstruct partial secret data from very few signatures, and finally mount a universal forgery attack

    Signaling by EphrinB1 and Eph Kinases in Platelets Promotes Rap1 Activation, Platelet Adhesion, and Aggregation via Effector Pathways that Do Not Require Phosphorylation of EphrinB1

    Get PDF
    We have previously shown that platelets express 2 receptor tyrosine kinases, EphA4 and EphB1, and the Eph kinase ligand, ephrinB1m and proposed that transcellular Eph/ephrin interactions made possible by the onset of platelet aggregation promote the further growth and stability of the hemostatic plug. The present study examines how this might occur. The results show that clustering of either ephrinB1 or EphA4 causes platelets to adhere to immobilized firinogen via αIIbβ3. Adhesion occurs more slowly than with adenosine diphosphate (ADP) abd requires phosphatidylinositol 3 (PI3)—kinase and protein kinase C activity but not ephrinB1 phosphorylation. By itself, Eph and ephrin signaling is insufficient to cause aggregation or the binding of soluble fibrinogen, but it can potentiate aggregation initiated by a Ca++ ionophore or by agonists for thrombin and thromboxane receptors. It also enhances Rap1 activation without requiring ADP secretion, ephrinB1 phosphorylation, or the activation of PI3-kinase and Src. From this we conclude that (1) Eph/ephrin signaling enhances the ability of platelet agonists to cause aggregation provided that those agonists can increase cytosolic Ca++; (2) this is accomplished in part by activating Rap1; and (3) these effects require not phosphotyrosine-based interactions with the ephrinB1 cytoplasmic domain

    Environmental monitoring of low-ppb ammonia concentrations based on single-wall carbon nanotube chemiresistor gas sensors: Detection limits, response dynamics, and moisture effects

    Get PDF
    EUROSENSORS 2014, the XXVIII edition of the conference series.Under a Creative Commons license.We present single-wall carbon nanotube (SWCNT) chemiresistor gas sensor (CGS) operating at room temperature, displaying an enhanced sensitivity to NH3. Ammonia concentrations in the full range of the average [NH3] in a urban environment have been measured, and a detection limit of 3 ppb is demonstrated, which is well below the sensitivities so far reported for non- functionalized SWCNTs operating at room temperature. Different materials were tested as substrates, including cheap plastic flexible substrates. In addition to a careful preparation of the SWCNT layers, the low-ppb limit is also attained by revealing and properly tracking a fast dynamics during the desorption process. On the basis of these results a model of the CGS response vs time is proposed. When functionalized with indium-tin oxide nanoparticles, a sensitivity increase is detected, along with a remarkable selectivity towards moisture.Peer Reviewe

    Tognolini et al. Reply

    Get PDF

    Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids

    Get PDF
    The role of the Eph-ephrin system in the etiology of pathological conditions has been consolidated throughout the years. In this context, approaches directed against this signaling system, intended to modulate its activity, can be strategic therapeutic opportunities. Currently, the most promising class of compounds able to interfere with the Eph receptor-ephrin protein interaction is composed of synthetic derivatives of bile acids. In the present review, we summarize the progresses achieved, in terms of chemical expansions and structure-activity relationships, both in the steroidal core and the terminal carboxylic acid group, along with the pharmacological characterization for the most promising Eph-ephrin antagonists in in vivo settings

    A Post-Quantum Digital Signature Scheme from QC-LDPC Codes

    Get PDF
    We propose a novel post-quantum code-based digital signature algorithm whose security is based on the difficulty of decoding Quasi-Cyclic codes in systematic form, and whose trapdoor relies on the knowledge of a hidden Quasi-Cyclic Low-Density-Parity-Check (QC-LDPC) code. The utilization of Quasi-Cyclic (QC) codes allows us to balance between security and key size, while the LDPC property lighten the encoding complexity, thus the signing algorithm complexity, significantly

    A photosensitizing fusion protein with targeting capabilities

    Get PDF
    Abstract The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed

    A photosensitizing fusion protein with targeting capabilities

    Get PDF
    The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed
    • …
    corecore