DE GRUYTER

Biomolecular Concepts 2022; 13: 175-182

Research Article

Stefano Bruno*, Marilena Margiotta, Marco Cozzolino®, Paolo Bianchini, Alberto Diaspro,
Luigi Cavanna, Massimiliano Tognolini, Stefania Abbruzzetti*, Cristiano Viappiani

A photosensitizing fusion protein with targeting

capabilities

https://doi.org/10.1515/bmc-2022-0014
received January 30, 2022; accepted March 10, 2022

Abstract: The photodynamic treatment for antimicrobial
applications or anticancer therapy relies on reactive oxygen
species generated by photosensitizing molecules after
absorption of visible or near-infrared light. If the photo-
sensitizing molecule is in close vicinity of the micro-
organism or the malignant cell, a photocytotoxic action
is exerted. Therefore, the effectiveness of photosensitizing
compounds strongly depends on their capability to target
microbial or cancer-specific proteins. In this study, we
report on the preparation and preliminary characterization
of human recombinant myoglobin fused to the vasoactive
intestinal peptide to target vasoactive intestinal peptide
receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced
by the photosensitizing compound Zn-protoporphyrin IX.
Taking advantage of the fluorescence emission by Zn-proto-
porphyrin IX, we show that the construct can bind prostate
cancer cells where the VPAC receptors are expressed.
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Introduction

Photodynamic therapy (PDT) of cancer is an adjuvant
therapeutic procedure that combines an otherwise harm-
less compound (the photosensitizer, PS) with visible light
and molecular oxygen to achieve the photoinduced killing
of malignant cells [1-5]. Cytotoxicity is obtained through
the action of reactive oxygen species (ROS), mostly singlet
oxygen, produced by the interaction between the excited
states of the PS and molecular oxygen [6]. The short life-
time of ROS (the lifetime of singlet oxygen in water is about
3ps [7] and that of O, radical is ca. 1pus [8]) means that
the oxidant action of these species is exerted only against
molecules located within some 200 nm from their gene-
ration site [9,10], which requires the photoactive com-
pound to be brought in close vicinity of sensitive cellular
components.

Precise and effective delivery of PS molecules to their
biological targets is still an open issue in PDT. Their low
water solubility, which reduces bioavailability, is nor-
mally addressed using suitable carrier systems [11-15].
Among possible carriers, proteins offer the advantage of
being inherently biocompatible. Particularly, PSs can
be covalently conjugated with peptides or proteins that
target specific cells [12]. Antibodies are an obvious choice
[12-18], although their recombinant production in mam-
malian cells is costly and time-consuming. Therefore,
single-domain antibodies called nanobodies were pro-
posed [16]. The use of short peptides to introduce tar-
geting properties in supramolecular complexes between
a PS and a carrier for PDT applications was also sug-
gested. In one strategy, short peptides are grafted on
nanoparticles [19,20] or supramolecular assemblies [21]
functionalizing with PS molecules. Peptides were also
conjugated directly to PS molecules [12,22,23].
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As an alternative to covalent conjugation to amino
acid residues, which might result in heterogeneous pro-
ducts, the delivery of hydrophobic PSs can take advantage
of their spontaneous binding to internal hydrophobic pro-
tein pockets of proper size. Within the binding pocket, PSs
preserve their monomeric, photoactive excited states,
leading to fluorescence emission and generation of ROS
[24-30].

Proteins capable of spontaneously binding PSs can
be engineered to encompass a signaling peptide endowed
with the desired target specificity [31,32]. Recombinant
carriers that include both the PS-binding moiety and
the targeting peptide do not require additional chemical
modifications — which would need further purification
steps — unlike chemically conjugated peptides [12]. More-
over, several peptides targeting drug receptors over-
expressed in cancer cells have been characterized for
both diagnostic purposes [33] and therapeutic applications
[34] and their incorporation in the sequence of a recombi-
nant protein is straightforward. The combination of PSs
with these functionalized nanostructures consisting of
PS-binding proteins fused with targeting peptides has
the potential for intelligent drug delivery with theranostic
capabilities [35].

Among protein-based photosensitizing compounds,
zinc-substituted myoglobin (ZnMb) is of special interest.
The photosensitizing properties of ZnMb were reported
by Lepeshkevich et al. [36]. In their study, the iron ion
at the center of the heme moiety of Mb was replaced with
a Zn(m) ion. Just like Fe-protoporphyrin IX, Zn-protopor-
phyrin IX is bound to the protein matrix using a coordinate
bond to the proximal HisF9. This introduces a photoactive
cofactor in the heme pocket that can photosensitize the
production of '0, with yield @, = (0.9 + 0.1) [36]. We
have recently broken these properties to obtain a photo-
sensitizing material that is effective against planktonic
Staphylococcus aureus, taking advantage of weak inter-
actions between the protein and the bacterial wall [37].

The superior photosensitizing properties of ZnMb
could be made more effective if targeting properties are
introduced into the protein carrier by fusing the myo-
globin gene with that coding for a short peptide sequence
that binds the molecular species of interest.

In this study, we explored this concept and reported
on the preparation and preliminary characterization of
human recombinant myoglobin genetically fused to the
vasoactive intestinal peptide (VIP). VIP is a 28-amino
acid peptide that belongs to the glucagon/secretin super-
family and is an agonist of the VPAC1 and VPAC2 G-pro-
tein-coupled receptors [38,39]. VIP basic peptide contains
three lysines (no. 15, 20, and 21) and two arginines (no. 12
and 14) [40,41]. VPAC1 s overexpressed in several frequently
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occurring human tumors, including breast, prostate, pan-
creas, lung, colon, stomach, liver, and bladder carci-
nomas, as well as lymphomas and meningiomas [42,43].
In particular, VPAC1 was identified in prostate cancer
cells, where overexpression was reported [42,44]. VPAC
receptors were suggested to play a major role in the pro-
gression and angiogenesis of several malignancies [45].
Reverse transcriptase polymerase chain reaction studies,
as well as functional studies using a specific agonist and
antagonist for each receptor subtype, peptide binding,
and adenylate cyclase stimulation, show that VPAC1 and
VPAC2 receptors are present in prostate cancer cell line
(PC3) cells [46,47], although more recent data suggest
that the expression of VPAC1 might be rather low [48].

The overexpression of VPAC1 on several common
neoplastic tissues is receiving attention both for tumor
imaging and targeted treatment by coupling cytotoxic
agents to VIP analogs [49], as functional studies demon-
strated a VIP-binding affinity for VPAC1 of 0.6 nM [50].
VIP analogs have been exploited to develop contrast
agents mostly based on radionuclide-labeled probes for
molecular imaging [45]. Nanoparticles designed for VIP
drug delivery have also been developed [51].

In this study, we showed that the recombinantly
expressed fusion protein myoglobin-VIP (Mb-VIP) is endowed
with targeting capability towards cells overexpressing VPAC1,
and can be turned into a photosensitizing compound by
replacing Fe-heme with Zn-heme (ZnMb-VIP). The photosen-
sitizing properties and the fluorescence emission by ZnMb-
VIP make the compound a potentially theranostic agent.

Materials and methods

Gene

The synthetic gene encoding human myoglobin (NCBI
Reference Sequence: NP_001349775.1) was codon-opti-
mized for expression in Escherichia coli. The gene was
fused at the N-terminal with a hexahistidine tag followed
by a tobacco etch virus (TEV) protease recognition site. At
the C-terminus, the gene was in-frame with a sequence
encoding a thrombin recognition site followed by encod-
ing the VIP peptide (HSDAVFTDNYTRLRKQMAVKKYLNS-
ILN) [52]. The thrombin site was added to remove the VIP
peptide from the final product if needed. The synthetic gene
(Geneart, Life Technologies) was subcloned in a pET28a
plasmid (Novagen, Merck group), which harbored a kana-
mycin resistance gene between the Ncol and Sall restriction
sites. The final construct — named pMbVIP —was verified
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through sequencing. The plasmid was finally transformed
into BL21 cells, BL21 star cells, Rosetta cells, and BL21
cells harboring the Takara plasmids (Takara Bio Inc.,
Shiga, Japan) for an initial expression screening. BL21
cells harboring the Takara 4 plasmid, which encodes for
chaperones groES, groEL, and tig, were subsequently
used for expression.

Expression of MbVIP

Single colonies of BL21 cells, BL21 star cells, Rosetta cells,
and BL21 cells harboring the Takara plasmids (Takara Bio
Inc., Shiga, Japan) were transformed with pMbVIP and
isolated from Luria-Bertani (L.B.) agar plates containing
the appropriate antibiotics. They were then inoculated in
50 mL of L.B. culture medium containing the appropriate
antibiotics. The following day, 10 mL of the cultures were
inoculated in 1L of L.B. or DM1 medium and grown at
37°C until an absorbance of 0.4 OD was achieved. At that
point, 1mM isopropyl 3-p-1-thiogalactopyranoside was
added, and the culture was allowed to grow at different
temperatures ranging from 20 to 42°C, in the presence
and absence of iron chloride (FeCl,) or hemin. Cells were
recovered by centrifugation, resuspended in phosphate-
buffered saline (PBS) buffer, and lysed by sonication.
The proteins were then purified with immobilized metal
affinity chromatography using a TALON® Superflow™ resin
(Cytiva) and finally brought in a solution containing
100 mm of NaH,PO, at pH 7. The proteins were then
concentrated to around 1mg/mL. The integrity of the
proteins obtained from the various cultures was tested by
matrix-assisted laser desorption/ionization (MALDI) spectro-
metry (MALDI TOF/TOF 4800 Plus, AB SCIEX), quantified by
sodium dodecyl-sulfate polyacrylamide gel electrophor-
esis, and characterized spectroscopically (Cary4000,
Agilent). Since expression in BL21 cells transformed with
the Takara 4 plasmid in the presence of hemin and at 20°C
offered the best results, the subsequent growth was carried
out under these conditions, in the presence of 30 pug/mL
kanamycin and 20 pg/mL chloramphenicol in all media.
Upon induction, 1pL tetracycline was also added to the
cultures.

Heme exchange of MbVIP

Fe-heme was exchanged using a published protocol [37].
Briefly, the protein at 1mg/mL concentration was first
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partially denatured by lowering the pH of its solution to
around 2.8. Butanone was then added to extract Fe-heme.
Butanone was then removed by extensive dialysis against
a buffer containing 100 mm of NaH,PO, at pH 7. Aliquots
of a Zn-protoporphyrin IX solution at 10 mm concentration
were then slowly added to the protein solution until a
small molar excess was reached. Excess Zn-heme was
removed by diafiltration, and the protein solution was
brought to 0.3 mg/mL concentration.

Preparation of ZnMb

As a non-targeted control, horse Mb was prepared as
Zn-protoporphyrin IX complex (ZnMb) as described [37].

Cell cultures

PC3 human prostate adenocarcinoma cells were grown in
Ham F12 nutrient mixture, supplemented with 5% FBS
and 1% penicillin—streptomycin solution. PC3 cells were
seeded on Nunc plates (ThermoFisher) at 60-80% con-
fluence and were used after incubation at 37°C and 5%
CO, for 24-48 h.

Spinning disk microscopy

Fluorescence imaging was performed with a spinning
disk confocal microscope comprising an inverted micro-
scope body (TiE, Nikon Instruments, Yokohama, Japan),
an incubation system (OKOLAB, Naples, Italy), four laser
lines (405, 488, 561, 640nm) and two spinning disks
containing about 20,000 pinholes coupled to the same
number of microlenses (CSU-X1, Yokogawa, Tokyo, Japan),
necessary to focus the excitation laser light. The fluorescence
light was collected by an oil immersion 100x 1.4NA objective
(Nikon Instruments, Yokohama, Japan) and acquired by
an electron multiplying charge coupled device (EMCCD)
camera (Ixon3 897 Andor, Oxford Instruments, Oxford, UK),
characterized by high sensitivity and temporal resolution.

Time-lapse analysis
The cells placed in the Nunc have been positioned inside

a suitable housing installed on the spinning disk that
keeps cells at the temperature of 37°C, RH 95%, and a
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Figure 1: Characterization of MbVIP. (a) MALDI mass spectrum of Mb-VIP purified from BL21 cells cotransformed with the Takara 4 plasmid
and grown overnight at 20°C. (b) Absorption (green) and fluorescence emission (red) spectra for ZnMb-VIP (4 pM) in PBS buffer. T= 20°C.

flow of 0.6 L/min. Different areas of the Nuncs were Excitation 561 nm, emission 592/22nm, exposure time
selected to follow the behavior of the cells in different 100 ms. For all the images, excitation was 561 nm, emis-
parts of the sample at the same time. The time-lapse sion 592/22 nm, exposure time 100 ms, the pixels’ area
was activated by acquiring one frame each 2min for 512x 512, and the pixel size was 0.23 mm. The first frame
the first 14 min and 1 frame each 5min up to 69 min. wasacquired without PS, after which, once the acquisition

Transmitted

Fluorescence

Figure 2: Fast confocal spinning disk fluorescence imaging of PC3 cells treated with ZnMb (1 pM) at 0 min (a and d), 19 min (b and e), and
59 min (c and f) of accumulation time. Time-lapse one frame each 2 min for the first 14 min and 1 frame each 5-59 min. Excitation 561 nm,
emission 592/22 nm, exposure time 100 ms. For all the images, the pixel’s area is 512 x 512, and the pixel size is 0.23 ym. 0-time was
collected before the PS is added to the solution. Scale bar 5 pm.
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of the frame was completed, PS was added and the accu-
mulation over time and the consequent photodamage
were followed.

Results and discussion

Protein expression and characterization

Preliminary attempts at expressing Mb-VIP were carried
out in BL21 cells, BL21 star cells, Rosetta cells, and BL21
cells harboring the Takara plasmids, grown in either L.B.
broth or DM1 medium. The growth temperature after
induction varied between 20 and 42°C. The addition of
either FeCl, or hemin at different concentrations was also
tested. All expression attempts but those in cells con-
taining the Takara 4 plasmid resulted in poor yields
and partial hydrolysis of the C-terminus, as assessed by
MALDI mass spectrometry. Indeed, the protein — with an
expected molecular weight (M.W.) of 23,807 — partially
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Fluorescence
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exhibited an M.W. around 800 Da (data not shown),
similar to that obtained upon digestion with thrombin.
Digestion of the fraction with low M.W. with thrombin did
not decrease further the observed m/z, indicating that the
observed proteolysis occurred at the C-terminus. The
expression in cells harboring the Takara 4 plasmid in
the presence of hemin and at 20°C led to the highest yield
and minimal hydrolysis at the C-terminus (Figure 1a).
Upon heme substitution with Zn-heme, the absorption
spectrum of the protein shows an intense Soret band
peaked at 428nm, and two Q-bands centered at 554
and 595 nm (Figure 1b) [36]. The fluorescence emission
spectrum is characterized by an intense narrow band
centered at 597 nm and a lower intensity band around
650 nm [36,37].

Interaction of PS compounds with
PC3 cells

To assess the possible nonspecific interactions between
ZnMb and VPAC1 expressing PC3 cells, we first incubated

Figure 3: Fast confocal spinning disk fluorescence imaging of PC3 cells before (a and ¢) and 4 min (b and d) after treatment with ZnMb-VIP
(1pM). Transmitted light (a and b), confocal fluorescence (c and d). Excitation 561 nm, emission 592/22 nm, exposure time 100 ms. For all
the images, the pixel’s area is 512 x 512, and the pixel size is 0.23 pm. O-time is collected before the PS is added to the solution. Scale

bar 20 pm.
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PC3 cells with ZnMb and collected images with a fast
confocal spinning disk microscope. Over time, fluores-
cence was observed from the bulk solvent but not from
cell components, which remained dark even after 1h
incubation (Figure 2). This is consistent with the lack
of high-affinity binding of the water soluble ZnMb with
the plasma membrane, as recently demonstrated for the
complex between hypericin and apomyoglobin [27]. In
that case, through confocal fluorescence microscopy,
we showed that when apomyoglobin (myoglobin without
heme) is used to transport the PS hypericin to tumor cells,
the PS payload is rapidly and efficiently transferred to
the plasma membrane, for which hypericin has a higher
affinity. On the other hand, the protein carrier showed no
interaction with the plasma membrane and remained
solubilized in the surrounding medium [27].

To assess the capability of ZnMb-VIP to target VPAC1
receptors, PC3 cells were incubated with ZnMb-VIP and
time-lapse images were collected from time O (before the
ZnMb-VIP was added) on, for about 1h (Figure 3). When
ZnMb-VIP was added to PC3 cultures, fluorescence appeared
on the plasma membrane after only ca. 2—-4 min (Figure 3d),
indicating high-affinity binding. Given the high affinity of
VIP for VPACI, this receptor is the most likely candidate for
binding. It is predicted that unspecific binding of ZnMb-VIP
through VIP direct insertion in the plasma membrane is
unlikely to occur, considering its amino acid composition,
which, according to the hydropathy scale of Kyte and Doo-
little [53], does not show a relevant propensity to bind
membranes.

For a long time, extensive damage to the cell struc-
ture was observed (data not shown), which will be the
subject of future functional investigations of the present
compound.

Conclusion

Human recombinant myoglobin fused with VIP allowed
to obtain a supramolecular complex where the globin
domain preserved the well-known capability to bind
and transport the heme, and the VIP domain can bind
to its VPACI1 receptor. The system has the advantage of
binding the modified Zn-heme, a well-characterized PS
endowed with the red fluorescence emission. In compar-
ison to other formulations, where PS molecules are cova-
lently bound post-translationally to the recombinant pro-
teins at reactive side chains of amino acids (typically Lys,
Cys, or Glu) to a different extent from each preparation,
the fusion construct binds stoichiometrically in the heme
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pocket. As such, the construct is a well-defined, single
chemical species. An additional advantage of this small
size, water-soluble protein is that it is stable fold (the
protein is stable also under acidic conditions, with a pK,
of about 3.8) [54], which allows its use under harsh environ-
mental conditions too. While the system is interesting in itself
for targeting several tumors characterized by VPACI over-
expression, we emphasized that the construct can be easily
adapted to target other receptors by introducing a different
targeting peptide in place of VIP. Future studies will assess
the potential of the compound for PDT.
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