33 research outputs found

    QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny

    Get PDF
    Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross "Contender" (C, resistant) 7 "Elegant Lady" (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C 7 EL population and to construct a linkage map. C 7 EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C 7 EL-2, R2 = 13.1-31.5 %) and EPPISF032 (LG C 7 EL-4, R2 = 11-14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R2 = 3.0-11.0 %). These results suggest that in the C 7 EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit

    Evaluation of seed quality and oil parameters in native Iranian almond (Prunus L. spp.) species

    No full text
    We assessed chemical composition and variation in oil content and seed weight of 40 wild-growing almonds (Prunus L. spp.) accessions collected from different parts of Iran. There were significant differences in kernel weight and oil parameters. Accessions ranged from 0.20 to 1.5 g in kernel weight, 0.2-3.0 mm in shell thickness, and 16-55 % in oil content. The predominant vegetable oil components of kernels were 4.6-9.5 % palmitic acid, 0.4-0.8 % palmitoleic acid, 1.0-3.4 % stearic acid, 48.8-88.4 % oleic acid and 11.3-33.2 % linoleic acid. Linolenic acid was detected in 15 accessions. High heritability was recorded for all studied traits and was maximum for shell thickness (98.5 %) and minimum for oil content (97.1 %). Maximum and minimum 'Euclidean' pair wise dissimilarities were 17.9 and 0.5, respectively. All 40 accessions were grouped into two major clusters

    Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits

    No full text
    18 pages, 6 figures, 5 tables.-- Published online: 10 March 2007Amplified fragment length polymorphism (AFLP) analysis is a rapid and efficient method for producing DNA fingerprints and molecular characterization. Our objectives were to: estimate genetic similarities (GS), marker indices, and polymorphic information contents (PICs) for AFLP markers in almond cultivars; assess the genetic diversity of almond cultivars and wild species, using GS estimated from AFLP fingerprints and molecular characterization; and facilitate the use of markers in inter-specific introgression and cultivar improvement. The genetic diversity of 45 almond cultivars from Iran, Europe, and America, were studied assaying 19 primer combinations. In addition, several agronomic traits were evaluated, including flowering and maturity times, self-incompatibility, and kernel and fruit properties. Out of the 813 polymerase chain reaction fragments that were scored, 781 (96.23%) were polymorphic. GS ranged from 0.5 to 0.96, marker indices ranged from 51.37 to 78.79, and PICs ranged from 0.56 to 0.86. Results allowed the unique molecular identification of all assayed genotypes. However, the correlation between genetic similarity clustering as based on AFLP and clustering for agronomic traits was low. Cluster analysis based on AFLP data clearly differentiated the genotypes and wild species according to their origin and pedigree, whereas, cluster analysis based on agronomic data differentiated according the pomological characterization. Our results showed the great genetic diversity of the almond cultivars and their interest for almond breeding.The authors are grateful to Shahrekord University for financial assistance.Peer reviewe
    corecore