508 research outputs found

    Axial and transverse deep‐water sediment supply to syn‐rift fault terraces: insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece

    Get PDF
    Deep‐water syn‐rift systems develop in partially‐ or transiently‐linked depocentres to form complicated depositional architectures, which are characterised by short transport distances, coarse grain sizes, and a wide range of sedimentary processes. Exhumed systems that can help to constrain the tectono‐stratigraphic evolution of such systems are rare or complicated by inversion tectonics. Here, we document a mid‐Pleistocene deep‐water syn‐rift system fed by Gilbert‐type fan deltas in the hangingwall of a rift margin fault bounding the West Xylokastro Horst block, on the southern margin of the Gulf of Corinth, Greece. Structural and stratigraphic mapping combined with digital outcrop models permit observations along this syn‐rift depositional system from hinterland source to deep‐water sink. The West Xylokastro Fault hangingwall is filled by two distinct sediment systems; an axial system fed by coarse‐grained sediment gravity flows derived from fault‐tip Gilbert‐type fan deltas and a lateral system dominated by mass transport deposits fed from an evolving fault‐scarp apron. Abrupt changes in stratigraphic architecture across the axial system are interpreted to record changes in relative base level, sediment supply and tectonics. Locally, depositional topography and intra‐basinal structures controlled sediment dispersal patterns, from bed‐scale infilling of local rugose topography above mass transport complexes, to basin‐scale confinement from the fault scarp apron. These acted to generate a temporally and spatially variable, heterogeneous stratigraphic architecture throughout the basin‐fill. The transition of the locus of sedimentation from a rift margin to a fault terrace through the syn‐sedimentary growth of a basinward fault produced regressive surfaces updip, which manifest themselves as channels in the deep‐water realm and acted to prograde the system. We present a new conceptual model that recognises coeval axial and transverse systems based on the stratigraphic architecture around the West Xylokastro fault block that emphasises the lateral and vertical heterogeneity of rift basin‐fills with multiple entry points

    Quantifying faulting and base level controls on syn-rift sedimentation using stratigraphic architectures of coeval, adjacent Early-Middle Pleistocene fan deltas in Lake Corinth, Greece

    Get PDF
    Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis

    Access regulation and the transition from copper to fiber networks in telecoms

    Get PDF
    In this paper we study the impact of different forms of access obligations on firms' incentives to migrate from the legacy copper network to ultra-fast broadband infrastructures. We analyze three different kinds of regulatory interventions: geographical regulation of access to copper networks-where access prices are differentiated depending on whether or not an alternative fiber network has been deployed; access obligations on fiber networks and its interplay with wholesale copper prices; and, finally, a mandatory switch-off of the legacy copper network-to foster the transition to the higher quality fiber networks. Trading-off the different static and dynamic goals, the paper provides guidelines and suggestions for policy makers' decision

    Gender-specific response in pain and function to biologic treatment of knee osteoarthritis : a gender-bias-mitigated, observational, intention-to-treat study at two years

    Get PDF
    Knee osteoarthritis is a major cause of disability worldwide. Newer modalities of treatment with less morbidity, such as intra-articular injection of microfragmented fat (MFAT), are showing promise. We report on our novel observation that women show a greater improvement in pain and function to MFAT than men. Traditionally, women have been underrepresented in studies and studies with both sexes regularly fail to analyze the results by sex. To mitigate for this bias and quantify it, we describe a technique using reproducible statistical analysis and replicable results with Open Access statistical software R to calculate the magnitude of this difference. Genetic, hormonal, environmental, and age factors play a role in our observed difference between the sexes. There is a need for further studies to identify the molecular basis for this difference and be able to utilize it to improve outcome for both women and men

    Multiple Plant Surface Signals are Sensed by Different Mechanisms in the Rice Blast Fungus for Appressorium Formation

    Get PDF
    Surface recognition and penetration are among the most critical plant infection processes in foliar pathogens. In Magnaporthe oryzae, the Pmk1 MAP kinase regulates appressorium formation and penetration. Its orthologs also are known to be required for various plant infection processes in other phytopathogenic fungi. Although a number of upstream components of this important pathway have been characterized, the upstream sensors for surface signals have not been well characterized. Pmk1 is orthologous to Kss1 in yeast that functions downstream from Msb2 and Sho1 for filamentous growth. Because of the conserved nature of the Pmk1 and Kss1 pathways and reduced expression of MoMSB2 in the pmk1 mutant, in this study we functionally characterized the MoMSB2 and MoSHO1 genes. Whereas the Momsb2 mutant was significantly reduced in appressorium formation and virulence, the Mosho1 mutant was only slightly reduced. The Mosho1 Momsb2 double mutant rarely formed appressoria on artificial hydrophobic surfaces, had a reduced Pmk1 phosphorylation level, and was nonresponsive to cutin monomers. However, it still formed appressoria and caused rare, restricted lesions on rice leaves. On artificial hydrophilic surfaces, leaf surface waxes and primary alcohols-but not paraffin waxes and alkanes- stimulated appressorium formation in the Mosho1 Momsb2 mutant, but more efficiently in the Momsb2 mutant. Furthermore, expression of a dominant active MST7 allele partially suppressed the defects of the Momsb2 mutant. These results indicate that, besides surface hydrophobicity and cutin monomers, primary alcohols, a major component of epicuticular leaf waxes in grasses, are recognized by M. oryzae as signals for appressorium formation. Our data also suggest that MoMsb2 and MoSho1 may have overlapping functions in recognizing various surface signals for Pmk1 activation and appressorium formation. While MoMsb2 is critical for sensing surface hydrophobicity and cutin monomers, MoSho1 may play a more important role in recognizing rice leaf waxes

    Single crystal, luminescent carbon nitride nanosheets formed by spontaneous dissolution

    Get PDF
    A primary method for the production of 2D nanosheets is liquid-phase delamination from their 3D layered bulk analogues. Most strategies currently achieve this objective by significant mechanical energy input or chemical modification but these processes are detrimental to the structure and properties of the resulting 2D nanomaterials. Bulk poly(triazine imide) (PTI)-based carbon nitrides are layered materials with a high degree of crystalline order. Here, we demonstrate that these semiconductors are spontaneously soluble in select polar aprotic solvents, that is, without any chemical or physical intervention. In contrast to more aggressive exfoliation strategies, this thermodynamically driven dissolution process perfectly maintains the crystallographic form of the starting material, yielding solutions of defect-free, hexagonal 2D nanosheets with a well-defined size distribution. This pristine nanosheet structure results in narrow, excitation-wavelength-independent photoluminescence emission spectra. Furthermore, by controlling the aggregation state of the nanosheets, we demonstrate that the emission wavelengths can be tuned from narrow UV to broad-band white. This has potential applicability to a range of optoelectronic devices

    Knowledge and perceptions of the risks of non-steroidal anti-inflammatory drugs among orthopaedic patients in Thailand

    Get PDF
    Background There is a high incidence of adverse effects from non-steroidal antiinflammatory drugs (NSAIDs) in Thailand, but patients’ perceptions and knowledge of NSAID risks is unknown. Objective This study aims to assess patients’ perceptions and knowledge of NSAID risks and factors affecting them. Setting University hospital in North-East of Thailand. Method A Cross-sectional study conducted over 4 months, using a self-administered questionnaire. Patients prescribed NSAIDs for at least one month duration from orthopaedic clinic were recruited using systematic random sampling. Main outcome measure Patients’ perceptions on NSAID risks, knowledge on risk factors, and their associated factors. Results A total of 474 questionnaires were assessed. Overall perceptions of risks was low (scoring below five on a 0–10 visual analogue scale), with risks associated with the renal system scoring highest. Perceived risk of gastrointestinal problems differed between patients using non-selective and selective NSAIDs (3.47 ± 2.75 vs 2.06 ± 2.98; P < 0.001). Receiving side effect information from a health professional was associated with higher risk perception. Most patients (80 %) identified high doses, renal disease and gastrointestinal ulcer increased risks of NSAIDs, but fewer than half recognized that use in the elderly, multiple NSAID use, drinking, hypertension and cardiovascular disease also increased risk of adverse events. Having underlying diseases and receiving side effect information were associated with 1.6–2.0 fold increased knowledge of NSAID risks. Conclusion Perceptions and knowledge concerning NSAID risks was generally low in Thai patients, but higher in those who had received side effect information. Risk-related information should be widely provided, especially in high-risk patients
    • 

    corecore