580 research outputs found

    The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between <it>Paramecium tetraurelia </it>and all studied <it>Tetrahymena </it>species. This raises the question of whether the high mitochondrial G+C content observed in <it>P. tetraurelia </it>is a characteristic property of <it>Paramecium </it>mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of <it>Paramecium caudatum </it>and compared the gene content and sequence properties to the closely related <it>P. tetraurelia</it>.</p> <p>Results</p> <p>The guanine + cytosine content of the <it>P. caudatum </it>mitochondrial genome was significantly lower than that of <it>P. tetraurelia </it>(22.4% vs. 41.2%). This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within <it>P. caudatum </it>clearly A/T ending codons dominated, whereas for <it>P. tetraurelia </it>the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus <it>Paramecium </it>resembles that of <it>P. caudatum </it>and that the shift observed in <it>P. tetraurelia </it>is restricted to the <it>P. aurelia </it>species complex.</p> <p>Conclusions</p> <p>Surprisingly, the codon usage bias in the <it>P. caudatum </it>mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related <it>T. pyriformis </it>and other single-celled eukaryotes such as <it>Chlamydomonas</it>, than to the closely related <it>P. tetraurelia</it>. These differences in base composition and codon usage bias were, however, not reflected in the amino acid composition. Most probably, the observed picture is best explained by a hitherto unknown (neutral or adaptive) mechanism that increased the guanine + cytosine content in <it>P. tetraurelia </it>mtDNA on the one hand, and strong purifying selection on the ancestral amino acid composition on the other hand. These contradicting forces are counterbalanced by a considerably altered codon usage pattern.</p

    A conceptual framework for invasion in microbial communities

    Get PDF
    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process

    A dual function TAR Decoy serves as an anti-HIV siRNA delivery vehicle

    Get PDF
    The TAR RNA of HIV was engineered as an siRNA delivery vehicle to develop a combinatorial therapeutic approach. The TAR backbone was found to be a versatile backbone for expressing siRNAs. Upon expression in human cells, pronounced and specific inhibition of reporter gene expression was observed with TARmiR. The resulting TARmiR construct retained its ability to bind Tat and mediate RNAi. TARmiR was able to inhibit HIV gene expression as a TAR decoy and by RNA interference when challenged with infectious proviral DNA. The implications of this dual function therapeutic would be discussed

    Myofibroblastic reaction is a common event in metastatic disease of breast carcinoma: a descriptive study

    Get PDF
    BACKGROUND: The modification of stromal components with the disappearance of CD34 positive fibrocytes and by contrast the acquisition of smooth-muscle actin positive myofibroblasts is a frequent event in breast carcinomas but has been little studied in its metastatic sites. Therefore, the aim of the present study is to examine the stromal expression of CD34 and SMA in lymph node and liver metastases which are two of the most frequent metastatic breast cancer sites.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A comparative genome-wide study of ncRNAs in trypanosomatids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have provided extensive evidence for multitudes of non-coding RNA (ncRNA) transcripts in a wide range of eukaryotic genomes. ncRNAs are emerging as key players in multiple layers of cellular regulation. With the availability of many whole genome sequences, comparative analysis has become a powerful tool to identify ncRNA molecules. In this study, we performed a systematic genome-wide in silico screen to search for novel small ncRNAs in the genome of <it>Trypanosoma brucei </it>using techniques of comparative genomics.</p> <p>Results</p> <p>In this study, we identified by comparative genomics, and validated by experimental analysis several novel ncRNAs that are conserved across multiple trypanosomatid genomes. When tested on known ncRNAs, our procedure was capable of finding almost half of the known repertoire through homology over six genomes, and about two-thirds of the known sequences were found in at least four genomes. After filtering, 72 conserved unannotated sequences in at least four genomes were found, 29 of which, ranging in size from 30 to 392 nts, were conserved in all six genomes. Fifty of the 72 candidates in the final set were chosen for experimental validation. Eighteen of the 50 (36%) were shown to be expressed, and for 11 of them a distinct expression product was detected, suggesting that they are short ncRNAs. Using functional experimental assays, five of the candidates were shown to be novel H/ACA and C/D snoRNAs; these included three sequences that appear as singletons in the genome, unlike previously identified snoRNA molecules that are found in clusters. The other candidates appear to be novel ncRNA molecules, and their function is, as yet, unknown.</p> <p>Conclusions</p> <p>Using comparative genomic techniques, we predicted 72 sequences as ncRNA candidates in <it>T. brucei</it>. The expression of 50 candidates was tested in laboratory experiments. This resulted in the discovery of 11 novel short ncRNAs in procyclic stage <it>T. brucei</it>, which have homologues in the other trypansomatids. A few of these molecules are snoRNAs, but most of them are novel ncRNA molecules. Based on this study, our analysis suggests that the total number of ncRNAs in trypanosomatids is in the range of several hundred.</p

    Alternative Splicing of Spg7, a Gene Involved in Hereditary Spastic Paraplegia, Encodes a Variant of Paraplegin Targeted to the Endoplasmic Reticulum

    Get PDF
    BACKGROUND: Hereditary spastic paraplegia defines a group of genetically heterogeneous diseases characterized by weakness and spasticity of the lower limbs owing to retrograde degeneration of corticospinal axons. One autosomal recessive form of the disease is caused by mutation in the SPG7 gene. Paraplegin, the product of SPG7, is a component of the m-AAA protease, a high molecular weight complex that resides in the mitochondrial inner membrane, and performs crucial quality control and biogenesis functions in mitochondria. PRINCIPAL FINDINGS: Here we show the existence in the mouse of a novel isoform of paraplegin, which we name paraplegin-2, encoded by alternative splicing of Spg7 through usage of an alternative first exon. Paraplegin-2 lacks the mitochondrial targeting sequence, and is identical to the mature mitochondrial protein. Remarkably, paraplegin-2 is targeted to the endoplasmic reticulum. We find that paraplegin-2 exposes the catalytic domains to the lumen of the endoplasmic reticulum. Moreover, endogenous paraplegin-2 accumulates in microsomal fractions prepared from mouse brain and retina. Finally, we show that the previously generated mouse model of Spg7-linked hereditary spastic paraplegia is an isoform-specific knock-out, in which mitochondrial paraplegin is specifically ablated, while expression of paraplegin-2 is retained. CONCLUSIONS/SIGNIFICANCE: These data suggest a possible additional role of AAA proteases outside mitochondria and open the question of their implication in neurodegeneration

    The Assembly of Individual Chaplin Peptides from Streptomyces coelicolor into Functional Amyloid Fibrils

    Get PDF
    The self-association of proteins into amyloid fibrils offers an alternative to the natively folded state of many polypeptides. Although commonly associated with disease, amyloid fibrils represent the natural functional state of some proteins, such as the chaplins from the soil-dwelling bacterium Streptomyces coelicolor, which coat the aerial mycelium and spores rendering them hydrophobic. We have undertaken a biophysical characterisation of the five short chaplin peptides ChpD-H to probe the mechanism by which these peptides self-assemble in solution to form fibrils. Each of the five chaplin peptides produced synthetically or isolated from the cell wall is individually surface-active and capable of forming fibrils under a range of solution conditions in vitro. These fibrils contain a highly similar cross-β core structure and a secondary structure that resembles fibrils formed in vivo on the spore and mycelium surface. They can also restore the growth of aerial hyphae to a chaplin mutant strain. We show that cysteine residues are not required for fibril formation in vitro and propose a role for the cysteine residues conserved in four of the five short chaplin peptides

    bcl-2 expression is not associated with survival in metastatic cutaneous melanoma: A historical cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Programmed cell death (apoptosis) has been implicated in tumor development and may affect the metastatic potential of tumor cells. The role of bcl-2, a proto-oncogene that inhibits apoptosis, has been studied in several malignancies, including cutaneous melanoma (CM). The purpose of this study was to evaluate the immunohistochemical expression of bcl-2 in 35 regional lymph node, 28 subcutaneous and 17 visceral CM metastases, correlating the findings with patient survival.</p> <p>Methods</p> <p>In a historical cohort study patient survival was correlated with the expression of bcl-2 in regional lymph node, subcutaneous and visceral metastases of CM. Eighty slides containing surgical specimens from 50 patients diagnosed with stage III and IV CM, 28 male (56%) and 22 female (44%), were analyzed. Mean age at diagnosis was 43 years (16–74 years; median = 42 years). Mean Breslow depth was 5.01 mm (0.4–27.5 mm). The slides were submitted to immunohistochemical reaction using anti-bcl-2 monoclonal antibody and classified according to the degree of staining (< 5%; 5 to 50%; or > 50% of tumor cells stained). The relationship between bcl-2 protein expression and survival for each type of metastasis, gender and age at initial diagnosis was analyzed.</p> <p>Results</p> <p>Mean overall survival was 33.9 months after the diagnosis of the initial metastatic lesion (range: 0 to 131 months). Twenty-four out of 50 patients (48%) had died from CM by the end of the study period. bcl-2 expression was detected in 74.3, 85.7 and 82.4% of lymph node, subcutaneous and visceral metastases, respectively. After univariate and multivariate analyses, no correlation was found between positive bcl-2 expression and overall survival for the types of metastases evaluated.</p> <p>Conclusion</p> <p>The immunohistochemical expression of bcl-2 in metastasis alone is not a prognostic marker for CM.</p
    corecore