323 research outputs found
Giant lobelias exemplify convergent evolution
Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution
Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level
<p>Abstract</p> <p>Background</p> <p>Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin.</p> <p>Results</p> <p>After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex.</p> <p>Conclusions</p> <p>We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.</p
Systematic Review of Behaviour Change Techniques within Interventions to Reduce Environmental Tobacco Smoke Exposure for Children.
Children are particularly vulnerable to environmental tobacco smoke (ETS). There is no routine support to reduce ETS in the home. We systematically reviewed trials to reduce ETS in children in order to identify intervention characteristics and behaviour change techniques (BCTs) to inform future interventions. We searched Medline, EMBASE, CINAHL, PsycINFO, ERIC, Cochrane Central Register of Controlled Trials, and Cochrane Tobacco Addiction Group Specialised Register from January 2017 to June 2020 to update an existing systematic review. We included controlled trials to reduce parent/caregiver smoking or ETS in children <12 years that demonstrated a statistically significant benefit, in comparison to less intensive interventions or usual care. We extracted trial characteristics; and BCTs using Behaviour Change Technique Taxonomy v1. We defined "promising" BCTs as those present in at least 25% of effective interventions. Data synthesis was narrative. We included 16 trials, of which eight were at low risk of bias. All trials used counselling in combination with self-help or other supporting materials. We identified 13 "promising" BCTs centred on education, setting goals and planning, or support to reach goals. Interventions to reduce ETS in children should incorporate effective BCTs and consider counselling and self-help as mechanisms of delivery
A Functional Gene Array for Detection of Bacterial Virulence Elements
Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples
Fuel Conditions Associated with Native and Exotic Grasses in a Subtropical Dry Forest in Puerto Rico
Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of native grasses in contributing to fuel loads in dry forest has received little attention. We assessed differences in fuel conditions among native and exotic grasses within a subtropical dry forest preserve in Puerto Rico. We quantified fine fuel loads, fuel continuity, and seasonal changes in percent dead grass among the following grass patch types: (1) native grass with no known history of recent fire, (2) exotic grass that had burned once (single burn), and (3) exotic grass that burns frequently. Sampling was conducted during one wet season (August to October 2008) and again in the following dry season (February to March 2009). Overall, fine fuel loading was highest in native grass, but this was due to woody fuels rather than grass fuels. Percent of dead grass fuels increased with the transition from wet to dry season, and this increase was more pronounced for exotic grasses. Fuel continuity was highest in frequently burned exotic grass. Differences in grass phenology and fuel continuity may contribute to differences in fire frequency among native and exotic grass patches. Fuel management focused on prescribed fire should be used in conjunction with restoration of tree canopy to reduce fuels and limit development of a grass-fire cycle
Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses
<p>Abstract</p> <p>Background</p> <p>Pneumonia and myocarditis are the most commonly reported diseases due to <it>Histophilus somni</it>, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in <it>H. somni </it>using traditional methods. Analyses of the genome sequences of several <it>Pasteurellaceae </it>species have provided insights into their biology and evolution. In view of the economic and ecological importance of <it>H. somni</it>, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the <it>Pasteurellaceae</it>.</p> <p>Results</p> <p>The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the <it>Pasteurellaceae</it>, several <it>H. somni </it>genes that may encode proteins involved in virulence (<it>e.g</it>., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor.</p> <p>Conclusions</p> <p>Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two <it>H. somni </it>strains.</p
Evolutionary patterns of two major reproduction candidate genes (Zp2 and Zp3) reveal no contribution to reproductive isolation between bovine species
<p>Abstract</p> <p>Background</p> <p>It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving <it>Bos </it>and <it>Bison </it>species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (<it>Zp2 </it>and <it>Zp3</it>) for seven representative species (111 individuals) from the Bovini tribe, including five species from <it>Bos </it>and <it>Bison</it>, and two species each from genera <it>Bubalus </it>and <it>Syncerus</it>.</p> <p>Results</p> <p>A pattern of low levels of intraspecific polymorphism and interspecific divergence was detected for the two sequenced fragments each for <it>Zp2 </it>and <it>Zp3</it>. At intraspecific level, none of neutrality tests detected deviations from neutral equilibrium expectations for the two genes. Several haplotypes in both genes were shared by multiple species from <it>Bos </it>and <it>Bison</it>.</p> <p>Conclusions</p> <p>Here we argue that neither ancestral polymorphism nor introgressive hybridization alone can fully account for haplotype sharing among species from <it>Bos </it>and <it>Bison</it>, and that both scenarios have contributed to such a pattern of haplotype sharing observed here. Additionally, codon-based tests revealed strong evidence for purifying selection in the <it>Zp3 </it>coding haplotype sequences and weak evidence for purifying selection in the <it>Zp2 </it>coding haplotype sequences. Contrary to a general genetic pattern that genes or genomic regions contributing to reproductive isolation between species often evolve rapidly and show little or no gene flow between species, these results demonstrate that, particularly, those sequenced exons of the <it>Zp2 </it>and the <it>Zp3 </it>did not show any contribution to reproductive isolation between the bovine species studied here.</p
GEICO (Spanish Group for Investigation on Ovarian Cancer) treatment guidelines in ovarian cancer 2012
In 2006, under the auspices of The Spanish Research Group for Ovarian Cancer (Spanish initials GEICO), the first “Treatment Guidelines in Ovarian Cancer” were developed and then published in Clinical and Translational Oncology by Poveda Velasco et al. (Clin Transl Oncol 9(5):308–316, 2007). Almost 6 years have elapsed and over this time, we have seen some important developments in the treatment of ovarian cancer. Significant changes were also introduced after the GCIG-sponsored 4th Consensus Conference on Ovarian Cancer by Stuart et al. (Int J Gynecol Cancer 21:750–755, 2011). So we decided to update the treatment guidelines in ovarian cancer and, with this objective, a group of investigators of the GEICO group met in February 2012. This study summarizes the presentations, discussions and evidence that were reviewed during the meeting and during further discussions of the manuscript
Monitoring of microbial hydrocarbon remediation in the soil
Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review
- …