84 research outputs found

    The concept of negative pressure wound therapy (NPWT) after poststernotomy mediastinitis – a single center experience with 54 patients

    Get PDF
    Deep sternal infections, also known as poststernotomy mediastinitis, are a rare but often fatal complication in cardiac surgery. They are a cause of increased morbidity and mortality and have a significant socioeconomic aspect concerning the health system. Negative pressure wound therapy (NPWT) followed by muscular pectoralis plasty is a quite new technique for the treatment of mediastinitis after sternotomy. Although it could be demonstrated that this technique is at least as safe and reliable as other techniques for the therapy of deep sternal infections, complications are not absent. We report about our experiences and complications using this therapy in a set of 54 patients out of 3668 patients undergoing cardiac surgery in our institution between January 2005 and April 2007

    Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features

    Get PDF
    Asymmetrical feathers have been associated with flight capability but are also found in species that do not fly, and their appearance was a major event in feather evolution. Among non-avialan theropods, they are only known in microraptorine dromaeosaurids. Here we report a new troodontid, Jianianhualong tengi gen. et sp. nov., from the Lower Cretaceous Jehol Group of China, that has anatomical features that are transitional between long-armed basal troodontids and derived short-armed ones, shedding new light on troodontid character evolution. It indicates that troodontid feathering is similar to Archaeopteryx in having large arm and leg feathers as well as frond-like tail feathering, confirming that these feathering characteristics were widely present among basal paravians. Most significantly, the taxon has the earliest known asymmetrical troodontid feathers, suggesting that feather asymmetry was ancestral to Paraves. This taxon also displays a mosaic distribution of characters like Sinusonasus, another troodontid with transitional anatomical features.published_or_final_versio

    Molecular characterization of occult hepatitis B virus infection in patients with end-stage liver disease in Colombia.

    Get PDF
    ABSTARCT: Hepatitis B virus (HBV) occult infection (OBI) is a risk factor to be taken into account in transfusion, hemodialysis and organ transplantation. The aim of this study was to identify and characterize at the molecular level OBI cases in patients with end-stage liver disease. METHODS: Sixty-six liver samples were obtained from patients with diagnosis of end-stage liver disease submitted to liver transplantation in Medellin (North West, Colombia). Samples obtained from patients who were negative for the surface antigen of HBV (n = 50) were tested for viral DNA detection by nested PCR for ORFs S, C, and X and confirmed by Southern-Blot. OBI cases were analyzed by sequencing the viral genome to determine the genotype and mutations; additionally, viral genome integration events were examined by the Alu-PCR technique. RESULTS: In five cases out of 50 patients (10%) the criteria for OBI was confirmed. HBV genotype F (subgenotypes F1 and F3), genotype A and genotype D were characterized in liver samples. Three integration events in chromosomes 5q14.1, 16p13 and 20q12 affecting Receptor-type tyrosine-protein phosphatase T, Ras Protein Specific Guanine Nucleotide Releasing Factor 2, and the zinc finger 263 genes were identified in two OBI cases. Sequence analysis of the viral genome of the 5 OBI cases showed several punctual missense and nonsense mutations affecting ORFs S, P, Core and X. CONCLUSIONS: This is the first characterization of OBI in patients with end-stage liver disease in Colombia. The OBI cases were identified in patients with HCV infection or cryptogenic cirrhosis. The integration events (5q14.1, 16p13 and 20q12) described in this study have not been previously reported. Further studies are required to validate the role of mutations and integration events in OBI pathogenesis

    Divergence in morphology, calls, song, mechanical sounds, and genetics supports species status for the Inaguan hummingbird (Trochilidae: Calliphlox "evelynae" lyrura)

    No full text
    The Bahama Woodstar (Calliphlox evelynae), a hummingbird endemic to the Bahama Archipelago, comprises two currently recognized subspecies: Calliphlox e. evelynae, found throughout the Bahamas and in the Turks and Caicos Islands, except on Great and Little Inagua; and C. e. lyrura, named for its unique, lyre-shaped outer tail feathers and found only on the islands of Great and Little Inagua. The two were originally described as separate species, partly on the basis of their divergent tail morphology, but were subsequently lumped by Peters (1945). These taxa are members of the North American "bee" hummingbird clade, which produce mechanical sounds with their tails during courtship displays. Changes in tail shape may produce significant acoustic divergence. To determine the extent of differentiation between lyrura and evelynae, we collected field recordings of calls, songs, and courtship displays from New Providence and Great Inagua islands and surveyed morphological variation across the archipelago. We sequenced 4 nuclear loci and 2 mitochondrial genes from 9 individuals of evelynae and 6 individuals of lyrura. Both sexes of lyrura and evelynae can be diagnosed by vocal calls, and males can be diagnosed by morphology, song, and courtship display. Phylogenetic reconstructions based on the genetic data indicate that the 2 populations are reciprocally monophyletic and that they diverged ∼0.69 mya. Our data indicate that lyrura is a unique evolutionary lineage that warrants species status under both the phylogenetic and the biological species concept

    Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.

    No full text
    The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather's aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized

    Diverse feather shape evolution enabled by coupling anisotropic signalling modules with self-organizing branching programme

    No full text
    Adaptation of feathered dinosaurs and Mesozoic birds to new ecological niches was potentiated by rapid diversification of feather vane shapes. The molecular mechanism driving this spectacular process remains unclear. Here, through morphology analysis, transcriptome profiling, functional perturbations and mathematical simulations, we find that mesenchyme-derived GDF10 and GREM1 are major controllers for the topologies of rachidial and barb generative zones (setting vane boundaries), respectively, by tuning the periodic-branching programme of epithelial progenitors. Their interactions with the anterior–posterior WNT gradient establish the bilateral-symmetric vane configuration. Additionally, combinatory effects of CYP26B1, CRABP1 and RALDH3 establish dynamic retinoic acid (RA) landscapes in feather mesenchyme, which modulate GREM1 expression and epithelial cell shapes. Incremental changes of RA gradient slopes establish a continuum of asymmetric flight feathers along the wing, while switch-like modulation of RA signalling confers distinct vane shapes between feather tracts. Therefore, the co-option of anisotropic signalling modules introduced new dimensions of feather shape diversification
    corecore