16 research outputs found
High Genetic Diversity and Fine-Scale Spatial Structure in the Marine Flagellate Oxyrrhis marina (Dinophyceae) Uncovered by Microsatellite Loci
Free-living marine protists are often assumed to be broadly distributed and genetically homogeneous on large spatial scales. However, an increasing application of highly polymorphic genetic markers (e.g., microsatellites) has provided evidence for high genetic diversity and population structuring on small spatial scales in many free-living protists. Here we characterise a panel of new microsatellite markers for the common marine flagellate Oxyrrhis marina. Nine microsatellite loci were used to assess genotypic diversity at two spatial scales by genotyping 200 isolates of O. marina from 6 broad geographic regions around Great Britain and Ireland; in one region, a single 2 km shore line was sampled intensively to assess fine-scale genetic diversity. Microsatellite loci resolved between 1–6 and 7–23 distinct alleles per region in the least and most variable loci respectively, with corresponding variation in expected heterozygosities (He) of 0.00–0.30 and 0.81–0.93. Across the dataset, genotypic diversity was high with 183 genotypes detected from 200 isolates. Bayesian analysis of population structure supported two model populations. One population was distributed across all sampled regions; the other was confined to the intensively sampled shore, and thus two distinct populations co-occurred at this site. Whilst model-based analysis inferred a single UK-wide population, pairwise regional FST values indicated weak to moderate population sub-division (0.01–0.12), but no clear correlation between spatial and genetic distance was evident. Data presented in this study highlight extensive genetic diversity for O. marina; however, it remains a substantial challenge to uncover the mechanisms that drive genetic diversity in free-living microorganisms
Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e22965, doi:10.1371/journal.pone.0022965.Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.This work was supported by the National Institute of Environmental Health Sciences (1-P50-ES012742 to DMA and DLE), by the National Science Foundation through the Woods Hole Center for Oceans and Human Health (OCE-0430724), and by the ECOHAB program (NOAA Grant NA06NOS4780245)
A Molecular and Co-Evolutionary Context for Grazer Induced Toxin Production in Alexandrium tamarense
Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community
Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga
Peer reviewe
The Hidden Sexuality of Alexandrium Minutum: An Example of Overlooked Sex in Dinoflagellates
Dinoflagellates are haploid eukaryotic microalgae in which rapid proliferation causes dense
blooms, with harmful health and economic effects to humans. The proliferation mode is
mainly asexual, as the sexual cycle is believed to be rare and restricted to stressful environmental
conditions. However, sexuality is key to explaining the recurrence of many dinoflagellate
blooms because in many species the fate of the planktonic zygotes (planozygotes)
is the formation of resistant cysts in the seabed (encystment). Nevertheless, recent
research has shown that individually isolated planozygotes in the lab can enter other routes
besides encystment, a behavior of which the relevance has not been explored at the population
level. In this study, using imaging flow cytometry, cell sorting, and Fluorescence In
Situ Hybridization (FISH), we followed DNA content and nuclear changes in a population of
the toxic dinoflagellate Alexandrium minutum that was induced to encystment. Our results
first show that planozygotes behave like a population with an “encystment-independent”
division cycle, which is light-controlled and follows the same Light:Dark (L:D) pattern as the
cycle governing the haploid mitosis. Resting cyst formation was the fate of just a small fraction
of the planozygotes formed and was restricted to a period of strongly limited nutrient
conditions. The diploid-haploid turnover between L:D cycles was consistent with two-step
meiosis. However, the diel and morphological division pattern of the planozygote division
also suggests mitosis, which would imply that this species is not haplontic, as previously
considered, but biphasic, because individuals could undergo mitotic divisions in both the
sexual (diploid) and the asexual (haploid) phases. We also report incomplete genome duplication
processes. Our work calls for a reconsideration of the dogma of rare sex in
dinoflagellates.Versión del edito
Characterization of 17 new microsatellite markers for the dinoflagellate Alexandrium fundyense (Dinophyceae), a harmful algal bloom species
Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2011-30 November 2011
This article documents the addition of 139 microsatellite marker loci and 90 pairs of single-nucleotide polymorphism sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Aglaoctenus lagotis, Costus pulverulentus, Costus scaber, Culex pipiens, Dascyllus marginatus, Lupinus nanus Benth, Phloeomyzus passerini, Podarcis muralis, Rhododendron rubropilosum Hayata var. taiwanalpinum and Zoarces viviparus. These loci were cross-tested on the following species: Culex quinquefasciatus, Rhododendron pseudochrysanthum Hay. ssp. morii (Hay.) Yamazaki and R.pseudochrysanthum Hayata. This article also documents the addition of 48 sequencing primer pairs and 90 allele-specific primers for Engraulis encrasicolus.12237437
