538 research outputs found

    Imaging the spotty surface of Betelgeuse in the H band

    Full text link
    This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. We measure an average limb-darkened diameter of 44.28 +/- 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 +/- 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 +/- 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.Comment: 10 pages, 10 figures, accepted for publication in A&A, references adde

    Dynamical Masses of Young Stars in Multiple Systems

    Full text link
    We present recent measurements of the orbital motion in the young binaries DF Tau and ZZ Tau, and the hierarchical triple Elias 12, that were obtained with the Fine Guidance Sensors on the HST and at the Keck Observatory using adaptive optics. Combining these observations with previous measurements from the literature, we compute preliminary orbital parameters for DF Tau and ZZ Tau. We find that the orbital elements cannot yet be determined precisely because the orbital coverage spans only about 90 degr in position angle. Nonetheless, the range of possible values for the period and semi-major axis already defines a useful estimate for the total mass in DF Tau and ZZ Tau, with values of 0.90{+0.85}{-0.35} M_sun and 0.81{+0.44}{-0.25} M_sun, respectively, at a fiducial distance of 140 pc.Comment: 26 pages, 9 figures, accepted for publication in A

    A Test of Pre-Main Sequence Evolutionary Models Across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tau

    Get PDF
    We present spatially separated optical spectra of the components of the young hierarchical quadruple GG Tau. Spectra of GG Tau Aa and Ab (separation 0".25 ~ 35 AU) were obtained with the Faint Object Spectrograph aboard the Hubble Space Telescope. Spectra of GG Tau Ba and Bb (separation 1".48 ~ 207 AU) were obtained with both the HIRES and the LRIS spectrographs on the W. M. Keck telescopes. The components of this mini-cluster, which span a wide range in spectral type (K7 - M7), are used to test both evolutionary models and the temperature scale for very young, low mass stars under the assumption of coeval formation. Of the evolutionary models tested, those of Baraffe et al. (1998, A&A, 337, 403) yield the most consistent ages when combined with a temperature scale intermediate between that of dwarfs and giants. The version of the Baraffe et al. models computed with a mixing length nearly twice the pressure scale height is of particular interest as it predicts masses for GG Tau Aa and Ab that are in agreement with their dynamical mass estimate. Using this evolutionary model and a coeval (at 1.5 Myrs) temperature scale, we find that the coldest component of the GG Tau system, GG Tau Bb, is substellar with a mass of 0.044 +/- 0.006 Msun. This brown dwarf companion is especially intriguing as it shows signatures of accretion, although this accretion is not likely to alter its mass significantly. GG Tau Bb is currently the lowest mass, spectroscopically confirmed companion to a T Tauri star, and is one of the coldest, lowest mass T Tauri objects in the Taurus-Auriga star forming region.Comment: 25 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Observations of T-Tauri Stars using HST-GHRS: I. Far Ultraviolet Emission Lines

    Get PDF
    We have analyzed GHRS data of eight CTTS and one WTTS. The GHRS data consists of spectral ranges 40 A wide centered on 1345, 1400, 1497, 1550, and 1900 A. These UV spectra show strong SiIV, and CIV emission, and large quantities of sharp (~40 km/s) H2 lines. All the H2 lines belong to the Lyman band and all the observed lines are single peaked and optically thin. The averages of all the H2 lines centroids for each star are negative which may indicate that they come from an outflow. We interpret the emission in H2 as being due to fluorescence, mostly by Ly_alpha, and identify seven excitation routes within 4 A of that line. We obtain column densities (10^12 to 10^15 cm^-2) and optical depths (~1 or less) for each exciting transition. We conclude that the populations are far from being in thermal equilibrium. We do not observe any lines excited from the far blue wing of Ly_alpha, which implies that the molecular features are excited by an absorbed profile. SiIV and CIV (corrected for H2 emission) have widths of ~200 km/s, and an array of centroids (blueshifted lines, centered, redshifted). These characteristics are difficult to understand in the context of current models of the accretion shock. For DR Tau we observe transient strong blueshifted emission, perhaps the a result of reconnection events in the magnetosphere. We also see evidence of multiple emission regions for the hot lines. While CIV is optically thin in most stars in our sample, SiIV is not. However, CIV is a good predictor of SiIV and H2 emission. We conclude that most of the flux in the hot lines may be due to accretion processes, but the line profiles can have multiple and variable components.Comment: 67 pages, 19 figures, Accepted in Ap

    VSI: the VLTI spectro-imager

    Full text link
    The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R=12000. Targets as faint as K=13 will be imaged without requiring a brighter nearby reference object. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysic including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return.Comment: 12 pages, to be published in Proc. SPIE conference 7013 "Optical and Infrared Interferometry", Schoeller, Danchi, and Delplancke, F. (eds.). See also http://vsi.obs.ujf-grenoble.f

    Infectious complications of targeted drugs and biotherapies in acute leukemia. Clinical practice guidelines by the European Conference on Infections in Leukemia (ECIL), a joint venture of the European Group for Blood and Marrow Transplantation (EBMT), the European Organization for Research and Treatment of Cancer (EORTC), the International Immunocompromised Host Society (ICHS) and the European Leukemia Net (ELN)

    Get PDF
    The 9th web-based European Conference on Infections in Leukemia (ECIL-9), held September 16-17, 2021, reviewed the risk of infections and febrile neutropenia associated with more recently approved immunotherapeutic agents and molecular targeted drugs for the treatment of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Novel antibody based treatment approaches (inotuzumab ozogamicin, gemtuzumab ozogamicin, flotetuzumab), isocitrate dehydrogenases inhibitors (ivosidenib, enasidenib, olutasidenib), FLT3 kinase inhibitors (gilteritinib, midostaurin, quizartinib), a hedgehog inhibitor (glasdegib) as well as a BCL2 inhibitor (venetoclax) were reviewed with respect to their mode of action, their immunosuppressive potential, their current approval and the infectious complications and febrile neutropenia reported from clinical studies. Evidence-based recommendations for prevention and management of infectious complications and specific alerts regarding the potential for drug-drug interactions were developed and discussed in a plenary session with the panel of experts until consensus was reached. The set of recommendations was posted on the ECIL website for a month for comments from members of EBMT, EORTC, ICHS and ELN before final approval by the panelists. While a majority of these agents are not associated with a significantly increased risk when used as monotherapy, caution is required with combination therapy such as venetoclax plus hypomethylating agents, gemtuzumab ozogamicin plus cytotoxic drugs or midostaurin added to conventional AML chemotherapy

    The Schro¨\ddot{o}dinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics

    Get PDF
    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schro¨\ddot{o}dinger-Poisson equations in the large NN limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as M5/3G1/2(N/)1/6\hbar \sim M^{5/3} G^{1/2} (N/)^{1/6}, where is GG the gravitational constant, NN and MM are the number and the mass of the bodies, and is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schro¨\ddot{o}dinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.

    CD4 cell count and the risk of AIDS or death in HIV-Infected adults on combination antiretroviral therapy with a suppressed viral load: a longitudinal cohort study from COHERE.

    Get PDF
    BACKGROUND: Most adults infected with HIV achieve viral suppression within a year of starting combination antiretroviral therapy (cART). It is important to understand the risk of AIDS events or death for patients with a suppressed viral load. METHODS AND FINDINGS: Using data from the Collaboration of Observational HIV Epidemiological Research Europe (2010 merger), we assessed the risk of a new AIDS-defining event or death in successfully treated patients. We accumulated episodes of viral suppression for each patient while on cART, each episode beginning with the second of two consecutive plasma viral load measurements 500 copies/µl, the first of two consecutive measurements between 50-500 copies/µl, cART interruption or administrative censoring. We used stratified multivariate Cox models to estimate the association between time updated CD4 cell count and a new AIDS event or death or death alone. 75,336 patients contributed 104,265 suppression episodes and were suppressed while on cART for a median 2.7 years. The mortality rate was 4.8 per 1,000 years of viral suppression. A higher CD4 cell count was always associated with a reduced risk of a new AIDS event or death; with a hazard ratio per 100 cells/µl (95% CI) of: 0.35 (0.30-0.40) for counts <200 cells/µl, 0.81 (0.71-0.92) for counts 200 to <350 cells/µl, 0.74 (0.66-0.83) for counts 350 to <500 cells/µl, and 0.96 (0.92-0.99) for counts ≥500 cells/µl. A higher CD4 cell count became even more beneficial over time for patients with CD4 cell counts <200 cells/µl. CONCLUSIONS: Despite the low mortality rate, the risk of a new AIDS event or death follows a CD4 cell count gradient in patients with viral suppression. A higher CD4 cell count was associated with the greatest benefit for patients with a CD4 cell count <200 cells/µl but still some slight benefit for those with a CD4 cell count ≥500 cells/µl
    corecore