153 research outputs found

    B=3 Tetrahedrally Symmetric Solitons in the Chiral Quark Soliton Model

    Get PDF
    In this paper, B=3 soliton solutions with tetrahedral symmetry are obtained numerically in the chiral quark soliton model using the rational map ansatz. The solution exhibits a triply degenerate bound spectrum of the quark orbits in the background of tetrahedrally symmetric pion field configuration. The corresponding baryon density is tetrahedral in shape. Our numerical technique is independent on the baryon number and its application to B≥4B \geq 4 is straightforward.Comment: 4 pages, 3 figure

    Asymptotically exact mean field theory for the Anderson model including double occupancy

    Full text link
    The Anderson impurity model for finite values of the Coulomb repulsion UU is studied using a slave boson representation for the empty and doubly occupied ff-level. In order to avoid well known problems with a naive mean field theory for the boson fields, we use the coherent state path integral representation to first integrate out the double occupancy slave bosons. The resulting effective action is linearized using {\bf two-time} auxiliary fields. After integration over the fermionic degrees of freedom one obtains an effective action suitable for a 1/Nf1/N_f-expansion. Concerning the constraint the same problem remains as in the infinite UU case. For T→0T \rightarrow 0 and Nf→∞N_f \rightarrow \infty exact results for the ground state properties are recovered in the saddle point approximation. Numerical solutions of the saddle point equations show that even in the spindegenerate case Nf=2N_f = 2 the results are quite good.Comment: 19, RevTeX, cond-mat/930502

    Multibaryons with heavy flavors in the Skyrme model

    Get PDF
    We investigate the possible existence of multibaryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multiskyrmion fields based on rational maps. We use an effective interaction lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order 1/m_Q. The model predicts some narrow heavy flavored multibaryon states with baryon number four and seven.Comment: 8 pages, no figures, RevTe

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    Get PDF
    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations

    A latent growth curve model to estimate electronic screen use patterns amongst adolescents aged 10 to 17 years

    Get PDF
    Background: High quality, longitudinal data describing young people's screen use across a number of distinct forms of screen activity is missing from the literature. This study tracked multiple screen use activities (passive screen use, gaming, social networking, web searching) amongst 10- to 17-year-old adolescents across 24 months. Methods: This study tracked the screen use of 1948 Australian students in Grade 5 (n = 636), Grade 7 (n = 672), and Grade 9 (n = 640) for 24 months. At approximately six-month intervals, students reported their total screen time as well as time spent on social networking, passive screen use, gaming, and web use. Patterns of screen use were determined using latent growth curve modelling. Results: In the Grades 7 and 9 cohorts, girls generally reported more screen use than boys (by approximately one hour a day), though all cohorts of boys reported more gaming. The different forms of screen use were remarkably stable, though specific cohorts showed change for certain forms of screen activity. Conclusion: These results highlight the diverse nature of adolescent screen use and emphasise the need to consider both grade and sex in future research and policy

    Governing the Global Commons with Local Institutions

    Get PDF
    Most problems faced by modern human society have two characteristics in common - they are tragedy-of-the-commons type of problems, and they are global problems. Tragedy-of-the-commons type of problems are those where a commonly shared resource is overexploited by free riders at the expense of everyone sharing the resource. The exploitation of global resources such as clean air and water, political stability and peace, etc. underlies many of the most pressing human problems. Punishment of free riding behavior is one of the most frequently used strategies to combat the problem, but the spatial reach of sanctioning institutions is often more limited than the spatial effects of overexploitation. Here, we analyze a general game theoretical model to assess under what circumstances sanctioning institutions with limited reach can maintain the larger commons. We find that the effect of the spatial reach has a strong effect on whether and how the commons can be maintained, and that the transitions between those outcomes are characterized by phase transitions. The latter indicates that a small change in the reach of sanctioning systems can profoundly change the way the global commons can be managed

    ST2 and IL-33 in Pregnancy and Pre-Eclampsia

    Get PDF
    Normal pregnancy is associated with a mild systemic inflammatory response and an immune bias towards type 2 cytokine production, whereas pre-eclampsia is characterized by a more intense inflammatory response, associated with endothelial dysfunction and a type 1 cytokine dominance. Interleukin (IL)-33 is a newly described member of the IL-1 family, which binds its receptor ST2L to induce type 2 cytokines. A soluble variant of ST2 (sST2) acts as a decoy receptor to regulate the activity of IL-33. In this study circulating IL-33 and sST2 were measured in each trimester of normal pregnancy and in women with pre-eclampsia. While IL-33 did not change throughout normal pregnancy, or between non-pregnant, normal pregnant or pre-eclamptic women, sST2 was significantly altered. sST2 was increased in the third trimester of normal pregnancy (p<0.001) and was further increased in pre-eclampsia (p<0.001). This increase was seen prior to the onset of disease (p<0.01). Pre-eclampsia is a disease caused by placental derived factors, and we show that IL-33 and ST2 can be detected in lysates from both normal and pre-eclampsia placentas. ST2, but not IL-33, was identified on the syncytiotrophoblast layer, whereas IL-33 was expressed on perivascular tissue. In an in vitro placental perfusion model, sST2 was secreted by the placenta into the ‘maternal’ eluate, and placental explants treated with pro-inflammatory cytokines or subjected to hypoxia/reperfusion injury release more sST2, suggesting the origin of at least some of the increased amounts of circulating sST2 in pre-eclamptic women is the placenta. These results suggest that sST2 may play a significant role in pregnancies complicated by pre-eclampsia and increased sST2 could contribute to the type 1 bias seen in this disorder

    Global fire emissions buffered by the production of pyrogenic carbon

    Get PDF
    Landscape fires burn 3–5 million km2 of the Earth’s surface annually. They emit 2.2 Pg of carbon per year to the atmosphere, but also convert a significant fraction of the burned vegetation biomass into pyrogenic carbon. Pyrogenic carbon can be stored in terrestrial and marine pools for centuries to millennia and therefore its production can be considered a mechanism for long-term carbon sequestration. Pyrogenic carbon stocks and dynamics are not considered in global carbon cycle models, which leads to systematic errors in carbon accounting. Here we present a comprehensive dataset of pyrogenic carbon production factors from field and experimental fires and merge this with the Global Fire Emissions Database to quantify the global pyrogenic carbon production flux. We found that 256 (uncertainty range: 196–340) Tg of biomass carbon was converted annually into pyrogenic carbon between 1997 and 2016. Our central estimate equates to 12% of the annual carbon emitted globally by landscape fires, which indicates that their emissions are buffered by pyrogenic carbon production. We further estimate that cumulative pyrogenic carbon production is 60 Pg since 1750, or 33–40% of the global biomass carbon lost through land use change in this period. Our results demonstrate that pyrogenic carbon production by landscape fires could be a significant, but overlooked, sink for atmospheric CO2
    • …
    corecore