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Abstract Microbes, which live in the human body, affect a large set of pathophysiological 
processes. Changes in the composition and proportion of the microbiome 
are associated with metabolic diseases (Fulbright et  al., PLoS Pathog 
13:e1006480, 2017; Maruvada et al., Cell Host Microbe 22:589–599, 2017), 
psychiatric disorders (Macfabe, Glob Adv Health Med 2:52–66, 2013; Kundu 
et al., Cell 171:1481–1493, 2017), and neoplastic diseases (Plottel and Blaser, 
Cell Host Microbe 10:324–335, 2011; Schwabe and Jobin, Nat Rev Cancer 
13:800–812, 2013; Zitvogel et  al., Cell 165:276–287, 2016). However, the 
number of directly tumorigenic bacteria is extremely low. Microbial dysbiosis 
is connected to cancers of the urinary tract (Yu, Arch Med Sci 11:385–394, 
2015), cervix (Chase, Gynecol Oncol 138:190–200, 2015), skin (Yu et  al., 
J Drugs Dermatol 14:461–465, 2015), airways (Gui et  al., Genet Mol Res 
14:5642–5651, 2015), colon (Garrett, Science 348:80–86, 2015), lymphomas 
(Yamamoto and Schiestl, Int J Environ Res Public Health 11:9038–9049, 
2014; Yamamoto and Schiestl, Cancer J 20:190–194, 2014), prostate (Yu, Arch 
Med Sci 11:385–394, 2015), and breast (Flores et al., J Transl Med 10:253, 
2012; Fuhrman et  al., J Clin Endocrinol Metab 99:4632–4640, 2014; Xuan 
et al., PLoS One 9:e83744, 2014; Goedert et al., J Natl Cancer Inst 107:djv147, 
2015; Chan et  al., Sci Rep 6:28061, 2016; Hieken et  al., Sci Rep 6:30751, 
2016; Urbaniak et al., Appl Environ Microbiol 82:5039–5048, 2016; Goedert 
et  al., Br J Cancer 118:471–479, 2018). Microbial dysbiosis can influence 
organs in direct contact with the microbiome and organs that are located at 
distant sites of the body. The altered microbiota can lead to a disruption of 
the mucosal barrier (Plottel and Blaser, Cell Host Microbe 10:324–335, 2011) 
or promote or inhibit tumorigenesis through the modification of immune 
responses (Kawai and Akira, Int Immunol 21:317–337, 2009; Dapito et  al., 
Cancer Cell 21:504–516, 2012) and microbiome-derived metabolites, such as 
estrogens (Flores et  al., J Transl Med 10:253, 2012; Fuhrman et  al., J Clin 
Endocrinol Metab 99:4632–4640, 2014), secondary bile acids (Rowland, 
Role of the gut flora in toxicity and cancer, Academic Press, London, p x, 
517 p., 1988; Yoshimoto et  al., Nature 499:97–101, 2013; Xie et  al., Int J 
Cancer 139:1764–1775, 2016; Shellman et al., Clin Otolaryngol 42:969–973, 
2017; Luu et al., Cell Oncol (Dordr) 41:13–24, 2018; Miko et al., Biochim 
Biophys Acta Bioenerg 1859:958–974, 2018), short-chain fatty acids (Bindels 
et al., Br J Cancer 107:1337–1344, 2012), lipopolysaccharide (Dapito et al., 
Cancer Cell 21:504–516, 2012), and genotoxins (Fulbright et al., PLoS Pathog 
13:e1006480, 2017). Thus, altered gut microbiota may change the efficacy 
of chemotherapy and radiation therapy (McCarron et  al., Br J Biomed Sci 
69:14–17, 2012; Viaud et al., Science 342:971–976, 2013; Montassier et al., 
Aliment Pharmacol Ther 42:515–528, 2015; Buchta Rosean et al., Adv Cancer 
Res 143:255–294, 2019). Taken together, microbial dysbiosis has intricate 
connections with neoplastic diseases; hereby, we aim to highlight the major 
contact routes.
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Abstract
Microbes, which live in the human body, 
affect a large set of pathophysiological pro-
cesses. Changes in the composition and pro-
portion of the microbiome are associated with 
metabolic diseases (Fulbright et  al., PLoS 
Pathog 13:e1006480, 2017; Maruvada et  al., 
Cell Host Microbe 22:589–599, 2017), psy-
chiatric disorders (Macfabe, Glob Adv Health 
Med 2:52–66, 2013; Kundu et  al., Cell 
171:1481–1493, 2017), and neoplastic dis-
eases (Plottel and Blaser, Cell Host Microbe 
10:324–335, 2011; Schwabe and Jobin, Nat 
Rev Cancer 13:800–812, 2013; Zitvogel et al., 
Cell 165:276–287, 2016). However, the num-

ber of directly tumorigenic bacteria is 
extremely low. Microbial dysbiosis is con-
nected to cancers of the urinary tract (Yu, Arch 
Med Sci 11:385–394, 2015), cervix (Chase, 
Gynecol Oncol 138:190–200, 2015), skin (Yu 
et  al., J Drugs Dermatol 14:461–465, 2015), 
airways (Gui et al., Genet Mol Res 14:5642–
5651, 2015), colon (Garrett, Science 348:80–
86, 2015), lymphomas (Yamamoto and 
Schiestl, Int J Environ Res Public Health 
11:9038–9049, 2014; Yamamoto and Schiestl, 
Cancer J 20:190–194, 2014), prostate (Yu, 
Arch Med Sci 11:385–394, 2015), and breast 
(Flores et  al., J Transl Med 10:253, 2012; 
Fuhrman et  al., J Clin Endocrinol Metab 
99:4632–4640, 2014; Xuan et al., PLoS One 
9:e83744, 2014; Goedert et al., J Natl Cancer 
Inst 107:djv147, 2015; Chan et  al., Sci Rep 
6:28061, 2016; Hieken et al., Sci Rep 6:30751, 
2016; Urbaniak et al., Appl Environ Microbiol 
82:5039–5048, 2016; Goedert et  al., Br J 
Cancer 118:471–479, 2018). Microbial dys-
biosis can influence organs in direct contact 
with the microbiome and organs that are 
located at distant sites of the body. The altered 
microbiota can lead to a disruption of the 
mucosal barrier (Plottel and Blaser, Cell Host 
Microbe 10:324–335, 2011) or promote or 
inhibit tumorigenesis through the modifica-
tion of immune responses (Kawai and Akira, 
Int Immunol 21:317–337, 2009; Dapito et al., 
Cancer Cell 21:504–516, 2012) and 
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microbiome-derived metabolites, such as 
estrogens (Flores et al., J Transl Med 10:253, 
2012; Fuhrman et al., J Clin Endocrinol Metab 
99:4632–4640, 2014), secondary bile acids 
(Rowland, Role of the gut flora in toxicity and 
cancer, Academic Press, London, p x, 517 p., 
1988; Yoshimoto et  al., Nature 499:97–101, 
2013; Xie et al., Int J Cancer 139:1764–1775, 
2016; Shellman et  al., Clin Otolaryngol 
42:969–973, 2017; Luu et  al., Cell Oncol 
(Dordr) 41:13–24, 2018; Miko et al., Biochim 
Biophys Acta Bioenerg 1859:958–974, 2018), 
short-chain fatty acids (Bindels et  al., Br J 
Cancer 107:1337–1344, 2012), lipopolysac-
charide (Dapito et  al., Cancer Cell 21:504–
516, 2012), and genotoxins (Fulbright et  al., 
PLoS Pathog 13:e1006480, 2017). Thus, 
altered gut microbiota may change the effi-
cacy of chemotherapy and radiation therapy 
(McCarron et al., Br J Biomed Sci 69:14–17, 
2012; Viaud et  al., Science 342:971–976, 
2013; Montassier et  al., Aliment Pharmacol 
Ther 42:515–528, 2015; Buchta Rosean et al., 
Adv Cancer Res 143:255–294, 2019). Taken 
together, microbial dysbiosis has intricate 
connections with neoplastic diseases; hereby, 
we aim to highlight the major contact routes.

Keywords
Microbiome · Breast cancer · Tumor microen-
vironment · Bacterial metabolite · Bacterial 
metabolism · Antitumor immunity · Tumor 
metabolism · Epithelial-mesenchymal 
transition · Tumorigenesis · Metastasis · 
Chemotherapy

10.1	 �The Human Microbiome

The human body harbors different kinds of sym-
biotic, commensal, and pathogenic bacteria that 
live on the surface and the cavities of the body. 
Microbiota is a collective term that refers to the 
group of microbes colonizing the human body, 
and the collection of genes they encode is known 
as our microbiome [36]. The number of coloniz-
ing microbial cells (>1014) is 10 times more than 

the total sum of human somatic and germ cells. 
Therefore, their collective genome—called the 
metagenome—contains a large number of genes 
that exceed the human genome by 150 times. 
This metagenome performs key functions rele-
vant to human health [37].

Each anatomical niche possesses a unique 
mixture of microbial populations (gut, skin, 
vagina, mouth, nose, and conjunctiva) that have 
important and functionally relevant individual 
variability (at the levels of genus, species, and 
strain) [5]. The great majority of microorganisms 
live in the gastrointestinal (GI) lumen. These 
microbes compete and collaborate with other 
organisms in this niche, resulting in a function-
ally and genetically plastic metagenome [5]. The 
GI microbiota plays a crucial role in digestion, 
maturation, immune response, protection against 
pathogen overgrowth, maintenance of intestinal 
barrier function, regulation of intestinal endo-
crine functions, neurologic signaling, bone den-
sity, biosynthesis of vitamins, neurotransmission, 
metabolism of bile salts, reaction or modification 
of drugs, elimination of exogenous toxins, and 
maintenance of the energy homeostasis of the 
host [38].

10.2	 �Bidirectional Microbiome-
Host Connection

There is increasing evidence for complex and 
dynamic microbial interactions with hosts. The 
microbe-human symbiotic connection is a result 
of millions of years of coevolution, coadaptation, 
and codependence. Bacterial colonization begins 
at birth and progresses through childhood to 
adulthood. The adaptation process is nonrandom 
[39] and depends on the body habitat, lifestyle, 
physiological conditions, genotype of the host, 
and presence of other microbes in the niche [40]. 
The function and composition of the microbiome 
are determined by the diet of the host, probiotic 
or antibiotic consumption, stress, and short- or 
long-term travel. Besides these external factors, 
the host can affect the dynamics of the microbi-
ome through its genetics, immune system, and 
personal hygiene [38]. Given the diverse func-
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tional repertoire of the microbiome, it is not sur-
prising that dysbiosis is associated with a broad 
range of diseases from neurological disorders to 
metabolic diseases and cancer [12]. Numerous 
studies highlight the relationship between 
changes in the function, composition, and pro-
portion of microbes—also called microbial dys-
biosis—and the progression of certain diseases. 
Koch’s concept that one microbe is responsible 
for the formation of one disease (“one microbe-
one disease hypothesis”) was shown to be an 
oversimplification. Recent advances have shown 
that the loss of balance in microbial communities 
and the global change in our microbiome are 
directly or indirectly connected to carcinogene-
sis, rather than the presence of a single causative 
microbe [41]. Nevertheless, there are directly 
tumorigenic bacteria, although their number is 
extremely low, including about 10 species (e.g., 
Helicobacter pylori promote the development of 
gastric cancer). Dysbiosis is associated with can-
cers of the urinary tract, cervix, skin, airways, 
colon, lymphomas, prostate, and breast [42]. 
However, it is still unclear whether cancer is the 
product of alterations of the microbiota or modi-
fications in the “normal” microbiome are the 
consequences of cancer progression.

10.3	 �The Tumor 
Microenvironment

Cancers are not just masses of homogenous 
malignant cells. Tumors have been recognized as 
complex organs, whose complexity may exceed 
that of normal healthy tissues. Interactions 
between malignant and recruited non-transformed 
cells create the tumor microenvironment (TME). 
Nonmalignant cells include immune cells, cells 
of the vasculature and lymphatic system, cancer-
associated fibroblasts, pericytes, and adipocytes 
[43]. The role of nonmalignant cells in the TME 
is to support cancer growth. Nonmalignant cells 
have a dynamic tumor-promoting function at all 

stages of carcinogenesis. The communication 
between cell types is driven by an extremely 
complex network of cytokines, chemokines, 
growth factors, other inflammatory mediators, 
and matrix remodeling enzymes [44]. Cancer cell 
metabolism is strictly regulated by the tumor 
microenvironment. The microbiome is a new 
component of the tumor microenvironment that 
impairs tumor cell metabolism by maintaining a 
healthy barrier, inducing inflammation, and pro-
ducing genotoxins and bacterial metabolites with 
different features. Below, we review the modali-
ties of how dysbiosis interferes with carcinogen-
esis (Fig. 10.1).

10.4	 �Bacteria-Driven 
Carcinogenesis 
Through Physical Interaction

The most relevant pathomechanism for 
microbiome-derived carcinogenesis is barrier 
failure. In healthy humans, numerous commensal 
bacteria are found in the intestinal lumen, where 
some bacteria are in direct association with the 
epithelium. The microbiota is vital in preserving 
the functional luminal barrier, by maintaining 
epithelial cell turnover, facilitating mucin pro-
duction, and competing for resources and, 
thereby, suppressing the growth of pathogens 
[45]. The physical and chemical barrier of gut 
epithelial cells prevents microbial translocation 
to the underlying connective tissue. Defects in 
protein-coding genes (e.g., laminin) that are 
essential for the maintenance of a normal barrier, 
infections, inflammation, carcinogenesis, or 
microbial dysbiosis may induce barrier failure. 
Inflammation and carcinogenesis may trigger 
barrier failure, but barrier failure also promotes 
inflammation and carcinogenesis, suggesting a 
forward-amplifying loop [6]. Breakdown of the 
intestinal barrier leads to translocation of bacteria 
and the development of a systemic inflammatory 
response [46].
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10.5	 �Microbiome-Immune System 
Interactions 
in Tumorigenesis

Microbiome-immune system interactions play 
multifaceted roles in tumorigenesis. The microbi-
ome may promote tumorigenesis by inducing 
chronic inflammation, disrupting the balance 
between cell proliferation and cell death, and 
triggering immune responses. The physical loss 
of the natural gut epithelial barrier—barrier fail-
ure—or the loss of the antibacterial defense sys-
tem enables the movement of cellular components 
and microbes across the barrier, where they cause 
an innate inflammatory response. The mamma-
lian immune system detects the presence of 
microbial infection through pattern recognition 
receptors (PRRs). Toll-like receptors (TLRs) and 
NOD-like receptors (NLR) belong to the PRR 
family and recognize different but overlapping 
microbial components. They are expressed in dif-
ferent cellular compartments (cell surface, cyto-
plasm, lysosome, and endosome) and activate 
specific signaling pathways that promote inflam-
mation, tumor proliferation, or resistance to cell 
death [23].

TLRs are one of the most powerful pro-
inflammatory stimuli. These structures recognize 
microbe-associated molecular patterns, such as 

lipopolysaccharides (LPS), peptidoglycan, fla-
gella, or microbial DNA/RNA. TLR2 recognizes 
peptidoglycan and lipoteichoic acid (bacterial 
cell wall components) and promotes gastric can-
cer, while TLR4 detects LPS (Gram-negative cell 
wall component) and contributes to skin, pan-
creas, liver, and colon cancer development [6]. 
Carcinogenesis is promoted through TLRs of 
epithelial cells, macrophages, and fibroblasts. 
TLR induction leads to the production of pro-
inflammatory cytokines, such as interleukins and 
TNFα. Downstream effectors of TLR signaling 
induce cell survival and suppress apoptosis 
through NF-κB (nuclear factor-κB) and STAT3 
signaling, which is in line with the role of MYD88 
mutations that induce NF-κB and STAT3 in many 
human lymphomas [24]. Tumor formation is 
reduced by pharmacologic inhibition of interleu-
kins (IL-17 and IL-23), antibiotic treatment, or 
MYD88 inactivation [6].

Although a direct link between endogenous 
bacteria and tumor-associated angiogenesis has 
not been shown, the microbiome is required for 
normal development of the vasculature. LPS, 
produced by the microbiome, may promote 
angiogenesis through TLRs. IL-17 is produced 
by T-helper-17 (Th17), suggesting that bacteria 
also impact the tumor microenvironment by stim-
ulating Th17 lymphocytes. A connection between 

Fig. 10.1  Schematic picture of the classification of microbiota-associated human malignancies. Class A is defined by 
the involvement of the immune response, Class B requires direct microbial interactions with parenchymal cells, Class 
C covers distant effects from local interactions, and Class D shows the consequences of altered microbiome composi-
tion. (Modified figure from [5])

T. Kovács et al.

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278



breast cancer and immunoglobulins has been 
established. Secretory immunoglobulin A (IgA) 
helps to maintain the integrity of the mucosal 
barrier, attenuates the host immune response, and 
regulates the composition of the gut microbial 
community.

Several bacterial species induce immunity in 
tumor development. Lactococcus species help 
maintain the cytotoxic activity of natural killer 
(NK) cells, while Sphingomonas yanoikuyae 
have an important role in maintaining breast tis-
sue health. Cytotoxic immune cells (cytotoxic T 
lymphocytes) are essential for identifying and 
destroying precancerous and cancerous cells; 
Fusobacterium nucleatum destroy this protective 
mechanism and enable tumor progression, while 
others stimulate anticancer immunity. 
Bifidobacterium, Bacteroides thetaiotaomicron, 
and Bacteroides fragilis enhance dendritic cell 
function and antitumor cytotoxic T cell immunity 
[1]. TLRs may also promote cancer cell prolifer-
ation through different growth factor receptor 
ligands (amphiregulin, epiregulin, and hepato-
cyte growth factors), which exert both local and 
long-distance effects.

In carcinogenesis, the microbiota induce acti-
vation of NOD-like receptors (NLRs) as well. 
Many studies focus on NOD2, because loss of 
NOD2 activity is connected with Crohn’s dis-
ease. NOD2 has a key role in the activation of 
NF-κB signaling and the formation of a bacterial 
community. Thus, NOD2 loss-of -function muta-
tions may lead to intestinal dysbiosis and an 
enhanced risk of developing colorectal carci-
noma (CRC). Genetically induced CRC is also 
evoked by NOD1 deficiency, which plays an 
important role in intestinal defense against bacte-
ria. NLRP6, another NLR, is important in 
microbiota-tumorigenesis interactions. NRRP6 
is a component and key activator of inflamma-
somes (multiprotein oligomers responsible for 
the activation of inflammatory responses), which 
are downregulated in dysbiosis-driven carcino-
genesis, together with decreased IL-18 produc-
tion [6].

Immunotherapy is used to eliminate residual 
cancer cells after chemotherapy or radiation ther-
apy. In therapy, monoclonal antibodies target 

molecules, such as anti-T-lymphocyte-associated 
antigen 4 (CTLA-4) and anti-programmed death 
1 (PD-1) or its ligand anti-PD-L1. The advantage 
of immunotherapy is that it stimulates and sup-
ports the immune system of the host to fight can-
cer cells. The gut microbiome can stimulate the T 
cell response and improve inflammatory signal-
ing through PRRs that potentiate the immune 
system to directly eliminate cancer cells. 
Antibodies against immune checkpoints improve 
T cell function and proliferation and, thereby, 
improve the anticancer immune response, pro-
viding an effective therapeutic approach in 
patients with various types of cancers, such as in 
advanced melanoma [47], renal cell carcinoma 
[48], or non-small cell lung cancer [49]. 
Alterations in commensal gut bacteria influence 
therapeutic responses to inhibition of CTLA-4 
and PD-1. Following CTLA-4 therapy, the micro-
bial composition shifts; Bacteroidales and 
Burkholderiales abundance decreases and 
Bacteroides and Clostridiales are enriched [50]. 
Bacteroides fragilis is capable of promoting 
T-helper 1 (Th1) responses and activating 
antigen-presenting cells (dendritic cells) through 
the induction of IL-12. Thus, an improvement in 
anti-CTLA-4 effectiveness may be partially due 
to the enrichment of Bacteroides fragilis. 
Improved effectiveness of anti-CTLA-4 therapy 
was observed in melanoma patients with 
increased abundance of Bacteroides, Bacteroides 
thetaiotaomicron, and Bacteroides fragilis [50]. 
The main bacterial component driving these pro-
cesses was found to be the LPS of Bacteroides 
species. Thus, inhibition of CTLA-4 can alter the 
composition of the gut microbiome that in turn 
influences responsiveness to immunotherapy. 
Studies on anti-PD-1 or anti-PD-L1 therapy 
showed similar bacteria-driven differences in 
tumor outgrowth. In a mouse model of mela-
noma, increased effectiveness of anti-PD-L1 
therapy was associated with enhanced 
Bifidobacterium (Bifidobacterium longum and B. 
breve) abundance in the gut and a consequent 
activation of dendritic cells [51]. In metastatic 
melanoma patients receiving anti-PD-1 and anti-
PD-L1 treatment, patients with greater alpha 
diversity with an enrichment of Clostridiales, 

10  The Microbiome as a Component of the Tumor Microenvironment

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374



Faecalibacterium, and Ruminococcaceae species 
and decrement in Bacteroidales had longer sur-
vival. These beneficial effects were partly due to 
an enhanced T cell response (connected mainly 
to CD8+ T lymphocytes) and the upregulation of 
antigen-presenting pathways [52]. Increased 
CD8+ T cell activation was shown in another 
study in advanced melanoma patients. Patients 
that responded to anti-PD-L1 therapy had 
elevated levels of Bifidobacterium longum, 
Collinsella aerofaciens, and Enterococcus fae-
cium. Moreover, all patients that responded to 
treatment carried Akkermansia muciniphila [53]. 
Better survival was shown in urothelial carci-
noma, renal cell carcinoma, or non-small cell 
lung carcinoma patients undergoing anti-PD-1 
treatment who did not receive antibiotics during 
or after treatment and carried elevated levels of 
Akkermansia and Alistipes species. These find-
ings were mainly connected to CD4+ T cell acti-
vation [54] and demonstrated that 
antibiotic-induced dysbiosis could negatively 
influence responses to immunotherapy.

However, the mechanisms that contribute to 
dysbiosis and changes in the microbial commu-
nity are not well understood. Host-driven immune 
and inflammatory responses are important driv-
ing factors that shape the bacterial community 
composition. The composition of the microbi-
ome, innate immunity, and inflammation deter-
mine the outgrowth of different types of specific 
bacteria by changing the production of metabo-
lites, such as nitrate. Nitrate may provide a unique 
energy source for facultative anaerobic bacteria 
(e.g., Enterobacteriaceae). Inflammation may 
promote bacterial fitness and adaptation by 
inducing the expression of stress-response genes 
in bacteria (e.g., Escherichia coli) [6].

10.6	 �Genotoxins and Microbiota-
Driven Genomic Instability

Inflammation enhances tumorigenesis by induc-
ing DNA damage and altering the mechanism of 
DNA repair. Macrophage release of reactive oxy-
gen species (ROS) in response to inflammatory 
cytokines directly induces DNA breakage and 

mutations, and their downstream pathways stim-
ulate transcription factors (NRF2, NF-κB) that 
impair cellular growth to produce cancer [36]. 
Enterococcus faecalis can generate large amounts 
of superoxide, while Fusobacteria species and 
Deltaproteobacteria produce hydrogen sulfide; 
both Fusobacteria species and 
Deltaproteobacteria are associated with CRC.

Hydrogen sulfide is a product of sulfate reduc-
tion from dietary taurine and sulfur-containing 
amino acids and has a wide effect on the host. 
Hydrogen sulfide is highly inflammatory and 
toxic to colonocytes. Furthermore, hydrogen sul-
fide can enhance colonocyte proliferation through 
the ERK1/2 pathway [55], inhibit mucus synthe-
sis and butyrate oxidation while impairing the 
activity of cytochrome oxidase, and generate free 
radicals that lead to genotoxicity.

Although the ability of microorganisms to 
produce ROS [56] contributes to tumorigenesis, 
bacteria can also release specific toxins that 
induce DNA damage responses, which also con-
tribute to tumorigenesis (Fig.  10.2). Damaged 
barrier function may also allow the bacteria to 
transfer or deliver toxins, including cytolethal 
distending toxin (CDT), colibactin, cytotoxic 
necrotizing factor 1 (CNF1), and Bacteroides fra-
gilis toxin. CDT and colibactin are true genotox-
ins, which directly damage the DNA and activate 
the ataxia signaling pathway and histone phos-
phorylation, which lead to G2/M cell cycle arrest 
[6]. CDT is created by Gram-negative bacteria 
(E. coli, Helicobacter species, and Salmonella 
typhi) and is relevant to colorectal, gastric, and 
gallbladder cancer. Colibactin is produced by E. 
coli, Enterobacteriaceae, Proteus mirabilis, and 
Klebsiella pneumoniae and is important in the 
development of CRC. Colibactin produced by E. 
coli induces DNA double-strand brakes, cell 
cycle arrest, and improper cell division [1]. 
Bacteroides fragilis toxin activates the Wnt/β--
catenin signaling pathway, which promotes epi-
thelial proliferation, by promoting the cleavage 
of the adhesion molecule, E-cadherin. The cleav-
age of E-cadherin leads to β-catenin translocation 
to the nucleus and enables the transcription of 
proto-oncogene c-myc, leading to colonic epithe-
lial hyperplasia [1].
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10.7	 �Bacterial Metabolites 
in Carcinogenesis

A major pathway in microbiome-host signaling 
is the production of bacterial metabolites. These 
metabolites, which are synthesized by the 
microbiome, enter the circulation at the site of 
production and travel to distant organs, where 
they exert their biological effects [57]. Bacterial 
metabolites behave like human hormones in the 
sense that they are synthesized by an “organ” (the 
microbiome) and are then transferred to the site 
of action by the circulation [57].

Microbiota have the potential to metabolize 
hormones, such as estrogen. The gut microbiome 
is a key determinant of estrogen levels in the 

body. β-Glucuronidases are the enzymes respon-
sible for estrogen deconjugation. Deconjugation 
of excreted estrogen is important in estrogen 
reuptake and, thus, modulation of systemic estro-
gen availability and the regulation of estrogen-
associated pathways. Numerous bacterial species 
can express β-glucuronidases, including 
Firmicutes and Bacteroidetes: Alistipes, 
Bacteroides, Bifidobacterium, Citrobacter, 
Clostridium, Collinsella, Dermabacter, 
Edwardsiella, Escherichia, Faecalibacterium, 
Lactobacillus, Marvinbryantia, 
Propionibacterium, Roseburia, and Tannerella. 
Thus, these bacterial species affect circulating 
and excreted estrogen levels. Reactivated estro-
gen increases the serum estrogen levels and act 

Fig. 10.2  The intestinal microbiota can modulate several hallmarks of cancer through different mechanisms
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through estrogen receptors (ERα and ERβ) to 
modulate the expression of several genes, includ-
ing mitochondrial genes. Elevated oxidative 
phosphorylation was shown to support metastasis 
[58], contribute to therapy failure [59], and, 
thereby, render the tumors more aggressive. 
Taken together, bacterial estrogen deconjugation 
promotes breast cancer progression and changes 
the risk for development and progression of 
estrogen-dependent cancers [6, 57].

The fermentation of nondigestible carbohy-
drates is beneficial for the host due to the genera-
tion of short-chain fatty acids (SCFAs), such as 
acetate, butyrate, formate, lactate, and propio-
nate. SCFAs are novel potential targets for the 
management of obesity, metabolic disorders, and 
lipomas, due to their ability to influence adipo-
cyte differentiation [60]. SCFAs have known 
anti-inflammatory, antiproliferative, and antineo-
plastic effects. In addition, SCFAs can regulate 
autophagy. Thus, SCFAs have a protective effect 
on the colonic mucosa and play a significant role 
in the protection against colon and liver cancer 
[6]. In the gut, acetate, butyrate, and propionate 
production are associated with a large group of 
bacteria. Acetate production is widespread, while 
the production of butyrate is connected to 
Faecalibacterium prausnitzii, Eubacterium hal-
lii, Eubacterium rectale, Roseburia faecalis, 
Odoribacter, and Anaerotruncus species. The 
majority of propionate production is associated 
with Bacteroidetes, Lachnospiraceae, and 
Negativicutes species, as well as to Roseburia 
inulinivorans and Ruminococcus obeum. In line 
with this, the abundance of Akkermansia 
muciniphila, a propionate-producing bacterium, 
is associated with the richness of the gut microbi-
ome [61]. SCFAs have both positive and negative 
effects on breast cancer. Stroma and cancer cells 
have free fatty acid receptors, through which 
SCFAs modulate several hallmarks of cancer: 
cell proliferation, invasion, apoptosis, metabo-
lism, and the expression level of certain genes. 
Lactate can be used as a direct energy substrate; 
thus, the inhibition of lactate metabolism reduces 
cancer cell viability. Butyrate enhances mito-
chondrial ROS level, induces apoptosis, and 

inhibits histone deacetylases, which lead to ele-
vated anticancer activity [57].

The intestinal microbiota regulate bile acid 
metabolism and are involved in producing the 
secondary bile acids, deoxycholic acid (DCA) 
and lithocholic acid (LCA), through the deconju-
gation, oxidation, and dehydroxylation of pri-
mary bile acids. The enzyme responsible for the 
conversion of primary bile acids to secondary 
bile acids is 7α/β hydroxysteroid dehydrogenase 
(HSDH). Conversion to secondary bile acids 
increases the hydrophobicity of bile salts allow-
ing recovery through the colonic epithelium. 
Secondary bile acids have both pro- and antican-
cer activity. The consumption of a high-fat diet 
changes the gut microbiome and enhances the 
level of DCA via 7/α-dehydroxylase, which is 
produced by bacteria, mainly clostridia. DCA is a 
promoter of carcinogenesis in certain cancers. 
DCA-elicited cell signaling is connected to pro-
tein kinase C and ERK1/2 signaling through epi-
dermal growth receptors, resulting in enhanced 
cell proliferation. DCA is known to increase 
CRC development and promote colon and esoph-
ageal cancers [6]. Moreover, bile acids disrupt 
cell membranes through their amphipathic prop-
erties and the generation of ROS and reactive 
nitrogen species. Bile acids also exert antimicro-
bial activity that changes the composition of the 
intestinal community. LCA is synthesized 
through 7α-dehydroxylation of chenodeoxycho-
lic acid (CDCA) or 7β-dehydroxylation of urso-
deoxycholic acid (UDCA). The enzyme 
responsible for LCA synthesis is encoded by the 
bile acid-inducible (baiH) operon and expressed 
by aerobic and anaerobic bacteria, including 
Bacteroides fragilis, Bacteroides intestinalis, 
Clostridium scindens, Clostridium sordellii, 
Clostridium hylemonae, and E. coli. These bacte-
ria belong to the phyla Bacteroides, Firmicutes, 
and Proteobacteria. LCA inhibits the epithelial-
to-mesenchymal transition, vascular endothelial 
growth factor (VEGF) production, and metastasis 
formation of breast cancer cells, changes the met-
abolic features of the cells, and enhances antitu-
mor immunity of the host [30]. In line with these 
observations, human serum levels of LCA and 
the ability of the microbiome to produce LCA are 
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largely reduced in breast cancer; this is most pro-
nounced in in situ and early stage carcinoma 
(stages 0 and 1) [30]. LCA can potentially exert 
its effects through the farnesoid X receptor 
(FXR), liver X receptor (LXR), pregnane X 
receptor (PXR), constitutive androstane receptor 
(CAR), vitamin D receptor (VDR), and 
G-protein-coupled bile acid receptor 1 (TGR5). 
In breast cancer, the main receptor is TGR5. 
Activation of TGR5 signaling was shown to 
induce OXPHOS, mitochondrial biogenesis 
through NRF1, AMPK, and PGC-1β signaling. 
The expression of mitochondrial proteins (cyto-
chrome c, atp5g1, and ndufb5) consequently 
increases mitochondrial activity and exerts anti-
Warburg effects in breast cancer models [30]. In 
supraphysiological concentrations (>1 μM), LCA 
was shown to inhibit fatty acid production and 
induce cell death and the expression of multidrug-
resistant proteins [62].

When undigested dietary compounds reach 
the large intestine, they are fermented through 
anaerobic respiration. High protein consumption 
is associated with elevated colonic fermentation. 
Bioactive products, similar to bile salts, can pro-
duce or inhibit carcinogenesis. Cadaverine, a bio-
genic amine, is synthesized from L-lysine by 
bacterial lysine decarboxylase enzymes (LdcC 
and CadA). Cadaverine also has a human origin, 
but it seems that bacterial production is more 
important as it highly exceeds human biosynthe-
sis. The main cadaverine-producing bacteria 
include Aeromonas veronii, Clostridium perfrin-
gens, E. coli, Enterobacteriaceae bacteria, 
Edwardsiella tarda, Hafnia alvei, Raoultella 
ornithinolytica, Staphylococcus, and 
Streptomyces species. These species belong to 
the Acinetobacteria, Bacteroides, Firmicutes, 
Fusobacteria, and Proteobacteria phyla. Trace 
amine-associated receptors (TAARs) were shown 
to be responsible for mediating cadaverine-
elicited effects. Through TAARs, cadaverine 
inhibits epithelial-to-mesenchymal transition, 
proliferation, movement, and invasion of breast 
cancer cells. Moreover, cadaverine treatment 
inhibits primary tumor infiltration to the sur-
rounding tissue and reduces the proportion of 
cancer stem cells [42].

Many bacteria in the GI tract have alcohol 
dehydrogenase activity, which enables the bacte-
ria to metabolize ethanol and produce reactive 
and toxic acetaldehyde. The most important gas-
tric pathogen, H. pylori, and some skin bacteria 
have high alcohol dehydrogenase activity. The 
colonic mucosa has a low aldehyde dehydroge-
nase activity, resulting in acetaldehyde accumu-
lation in the colon. High acetaldehyde levels 
contribute to the pathogenesis of alcohol-induced 
diarrhea and the increased risk of colon polyps 
and colon cancer [63] (Fig. 10.3).

10.8	 �The Interference 
of the Microbiome 
with Chemotherapy

Bacteria of the intestinal microbiome can inter-
fere with therapeutic agents during cancer treat-
ment and management. The microbiome can 
modulate the efficacy of both chemotherapy and 
radiotherapy. Bacteria can inactivate or activate 
chemotherapeutic drugs, alter immune responses, 
or interfere with the side effects of the therapy. 
The relationship is reciprocal, as tumor therapy 
can influence the composition and function of the 
microbiome [57].

Chemotherapeutic compounds, such as cispla-
tin or oxaliplatin, exert their cytotoxic effects 
through DNA damage, the upregulation of apop-
totic pathways, or the promotion of antitumor 
immune responses (through a TLR4-dependent 
mechanism). The antitumor effects of platinum 
compounds significantly decrease upon broad-
spectrum antibiotic treatment or in microbiota-
deficient mice. In addition, tumor-infiltrating 
cells show reduced production of ROS after anti-
biotic treatment [35]. In this scenario, commen-
sal microbes prime tumor-infiltrating cells for 
ROS production through the connection to PRRs, 
with the involvement of MYD88 signaling 
(described previously) [6, 56]. Lactobacillus aci-
dophilus supplementation can restore the antitu-
mor effects of cisplatin in mice [11]. 
Cyclophosphamides have been used for antican-
cer therapy for almost 60  years. In high doses, 
cyclophosphamides are immunosuppressive, 
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while in low doses, cyclophosphamides promote 
the antitumor immune response through activa-
tion of cytotoxic T cells and induction of immu-
nogenic cell death [33]. Cyclophosphamides are 
used in the therapy of breast cancer; however, 
cyclophosphamides cause damage to the gut 
mucosa, making the gut leaky and allowing gut 
bacteria to enter the circulation. A rich microbi-
ome and elevated levels of Lactobacillus planta-
rum are protective against 
cyclophosphamide-induced mucosal injury [57]. 
Cyclophosphamide treatment causes the overrep-
resentation of Gram-negative species, such as 
Barnesiella intestinihominis that enhance effec-
tor T cells (cytotoxic CD8+ T cell), and 
Enterococcus hirae, Gram-positive bacteria that 
enhance MYD88-dependent CD8+ T cell activa-
tion in a tumor-specific manner. Both bacteria are 
regulated by intestinal NOD2 receptors that pro-
mote a pro-inflammatory tumor environment and 
drive antitumor immune responses [35]. T cell-
mediated immune responses against B. intestini-
hominis and E. hirae have clinical relevance in 
chemotherapy-treated patients with lung and 
ovarian cancers.

In addition to cyclophosphamides, anthracy-
clines, selective estrogen receptor modulators 
(SERMs), taxanes, and antimetabolites have key 
roles in breast cancer therapy. Anthracyclines are 
produced by Streptomyces species. Anthracyclines 
act mainly by intercalating into DNA and inter-
fering with DNA metabolism and RNA produc-
tion, or by generating excessive 
ROS. Anthracyclines can be bacteriostatic; they 
decrease the abundance of Acinetobacter species 
[32]. No bacterial drug metabolism was associ-
ated with SERMs (tamoxifen, raloxifene). 
Tamoxifen can modulate the composition of the 
microbiome, while tamoxifen resistance can also 
be modulated by the microbiome. SERMs are 
toxic to different species in the GI tract, including 
Acinetobacter baumannii, Bacillus stearother-
mophilus, Enterococcus faecium, Klebsiella 
pneumoniae, Porphyromonas gingivalis, 
Pseudomonas aeruginosa, and Streptococcus 
mutans [57]. Taxanes (paclitaxel, docetaxel) are 
widely used as chemotherapy agents. Taxanes 
disrupt microtubule formation and, hence, block 
cell division and proliferation. Taxanes may 
change the composition of the microbial commu-
nity or interfere with bacterial LPS, while activat-

Fig. 10.3  Mechanisms by which microbial dysbiosis modulates carcinogenesis

T. Kovács et al.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737



ing the immune system. PARP inhibitors are 
drugs used in the treatment of ovarian cancer 
with a potential to be used for other neoplasias 
(e.g., breast cancer, prostate cancer). PARP 
inhibitors were shown to induce the diversity of 
the gut microbiome [64].

Drugs are often used in combinations to 
enhance treatment efficacy. Irinotecan is used to 
treat colon cancer and small cell lung carcinoma. 
For treating colon cancer, irinotecan is generally 
used in combination with 5-fluorouracil (5FU), 
whereas for the treatment of small cell lung can-
cer, irinotecan is combined with cisplatin. 
Bacterial reactivation of irinotecan by bacterial 
β-glucuronidase leads to severe side effects, such 
as diarrhea, vomiting, bone marrow suppression, 
hair loss, shortness of breath, and fever. Antibiotic 
treatment or β-glucuronidase inhibition prevents 
most of these side effects [6]. When 5FU is used 
in combination with irinotecan, dysbiosis-
induced mucositis leads to bacterial translocation 
from the GI tract. Both 5FU and gemcitabine 
undergo bacterial activation and bacterial deacti-
vation. In human pancreatic ductal adenocarci-
noma, Gammaproteobacteria was found to be the 
most important player in deactivating gem-
citabine. In tumors, levels of 
Gammaproteobacteria were elevated in tumor 
patients as compared to healthy individuals, 
underlining its role in the regulation of gem-
citabine availability. Both 5FU and gemcitabine 
have bactericidal properties; therefore, they can 
alter the composition of the GI microbial com-
munity [57].

Chemotherapy is often not specific for one or 
two bacterial species, but change the proportion 
and diversity of the microbiome. After chemo-
therapy, both the alpha diversity, which repre-
sents species richness (the number of different 
species in a sample), and beta diversity, which 
refers to the diversity in the microbial community 
between different environments, are altered as 
compared to samples without chemotherapy. 
These changes are independent of covariates 
(age, sex, previous antibiotic consumption, and 
previous chemotherapeutic treatment) and show 
increases in Citrobacter, Enterococcus, 
Klebsiella, Megasphaera, and Parabacteroides 

species, while showing decrements in the abun-
dance of Adlercreutzia, Anaerostipes, 
Bifidobacterium, Blautia, Clostridium, 
Collinsella, Coprococcus, Dorea, Lachnospira, 
Roseburia, and Ruminococcus species. Some 
bacteria showed resistance to chemotherapy; thus 
their abundance did not change upon treatment, 
including Actinomyces, Erysipelotrichaceae, 
Mobiluncus, Mitsuokella, Oxalobacter, 
Prevotella, Scardovia, and Slackia [34].

Besides inducing taxonomic dysbiosis, che-
motherapy can disrupt microbial function. 
Several metabolic pathways can be suppressed 
by chemotherapy, including amino acid, carbo-
hydrate, and nucleotide metabolism, as well as 
the metabolism of vitamins and cofactors. Other 
pathways are enhanced by chemotherapy, includ-
ing signal transduction, xenobiotic degradation, 
and glycan metabolism. Glycan metabolism, 
together with disrupted carbohydrate and amino 
acid metabolism, contributes to enhanced intesti-
nal inflammation [65] and upregulation of nitro-
gen, sulfate, and riboflavin pathways, which is 
associated with inflammatory diseases, increased 
ROS production, and bacterial translocation [66]. 
Moreover, chemotherapy increases bacterial 
motility proteins and flagella assembly (essential 
for bacterial pathogenesis, motility, adhesion, 
and invasion).

Dysregulated microbiota plays a significant 
role in the development of GI mucositis. 
Mucositis is a painful inflammation of the 
mucous membranes of the digestive system, usu-
ally as an unpleasant side effect of chemotherapy 
and radiotherapy for cancer. In the first step of 
this process, the microbiome enhances the activa-
tion of NF-κB and TNFα signaling, leading to 
long-lasting inflammation. Several bacteria are 
reduced after chemotherapy, including 
Bifidobacterium, Coprococcus, Clostridium, 
Dorea, Faecalibacterium, Lachnospira, 
Roseburia, and Ruminococcus, which inhibit 
inflammation through blocking NF-κB and pro-
duce mucosa-protecting metabolites (SCFAs), 
whereas Citrobacter and other species, which 
participate in LPS biosynthesis and enhance 
intestinal inflammation, are increased during 
chemotherapy [34]. Subsequently, GI mucositis 
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barrier dysfunction develops, leading to increased 
intestinal permeability, which coincides with a 
decrease in the amount of the previously men-
tioned protective bacteria. The microbiome may 
modulate the composition of the mucus layer, as 
the terminal step of mucositis induction. 
Citrobacter, which increases after chemotherapy, 
may participate in the degradation of the mucosal 
barrier through the expression of mucus-
degrading enzymes (mucinase, glycosidase), and 
Enterobacteriaceae can disrupt the mucus layer. 
Butyrate-producing bacteria protect the mucin 
layer, as butyrate increase mucin synthesis. A 
decrement in cysteine, proline, and methionine 
metabolism, which occurs during chemotherapy, 
can also be responsible for altered mucin compo-
sition and the development of GI mucositis after 
chemotherapy [34].

Radiation therapy is used as a primary treat-
ment in cancers that are localized to one area of 
the body to prevent tumor recurrence after sur-
gery or applied together with chemotherapeutic 
agents. Radiation itself is genotoxic, resulting in 
cancer cell death. However, radiation can also 
abolish nontarget cells due to the activation of the 
immune system by radiation-induced inflamma-
tion. The microbiota is known to be involved in 
these off-target effects due to intestinal mucosa 
damage and toxicity. Radiotherapy decreases 
both the diversity and the total amount of gut bac-
teria, particularly Bacteroidetes, 
Enterobacteriaceae, Firmicutes, and 
Lactobacillus species, while enriching 
Fusobacterium and Proteobacteria, which are 
connected with increased production of pro-
inflammatory cytokines [35].

10.9	 �Modulation 
of the Microbiome 
to Enhance the Efficacy 
of Chemotherapy

Probiotics and prebiotics are widely used to shift 
the composition of the microbiome, and these 
interventions are potentially useful in restoring 
the microbiome after chemotherapy. Probiotics 
contain live bacteria that can be administered 

orally, while prebiotics (dietary prebiotics) are 
compounds in food, which provide substrates 
that stimulate the growth or activity of advanta-
geous bacteria colonizing the gut. Prebiotics and 
probiotics prevent infection and moderate the 
side effects of cancer treatment. Administration 
of various strains of Lactobacillus, such as 
Lactobacillus acidophilus, is associated with 
enhanced cisplatin sensitivity and longer survival 
in lung cancer [35]. Bifidobacterium bifidum, 
Lactobacillus acidophilus, Lactobacillus casei, 
and Lactobacillus rhamnosus decrease the toxic-
ity associated with 5FU chemotherapy and, con-
sequently, reduce abdominal discomfort and 
diarrhea. In addition, Bifidobacterium and 
Lactobacillus species in combination were able 
to moderate the side effects after radiation treat-
ment. Current clinical trials are focused on the 
efficacy of probiotic treatment for colorectal, kid-
ney, breast, gynecologic, and lung cancer [35].

Fecal microbiota transplantation (FMT), also 
known as stool transplantation, is the process of 
transplanting fecal bacteria from a healthy indi-
vidual into a diseased subject. FMT is an effec-
tive therapy to shift the composition of the 
microbiome. FMT is effective in the treatment of 
Clostridium difficile, where FMT is curative 
through enhancement of the diversity of the 
microbiome [67]. FMT could be potentially 
effective after chemotherapy or radiotherapy in 
cancer patients by avoiding gut toxicity or pre-
venting infections. However, FMT has numerous 
side effects (fever, diarrhea, vomiting), including 
serious side effects, such as GI bleeding or perfo-
ration, that limit its applicability in cancer 
patients [35].

As a developing future therapy, bacterial engi-
neering offers the opportunity to treat cancer 
without reconfiguring the gut microbiome. 
Biologically engineered bacteria could be applied 
effectively to target cancer cells or to deliver ther-
apeutic agents, thereby avoiding serious side 
effect-eliciting anticancer therapies. Bacterial 
cells can be easily and rapidly transfected with 
vectors encoding interfering RNAs, cytokines, 
toxins, antiangiogenic factors, or antibodies. 
Listeria and Shigella species could invade 
hypoxic tumor tissues, and, given their quick rep-
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lication rate, these bacteria could amplify their 
transgene(s) within the tumor microenvironment. 
Upon the application of bacteria, finding a good 
balance is necessary; one must seed a sufficient 
number of bacteria to elicit therapeutic effect but 
should avoid suppressing the immune system at 
the same time [35] (Fig. 10.4).

10.10	 �Type of Cancers Related 
to Microbial Dysbiosis

Besides the GI tract, other organs are colonized 
by a unique microbial community, such as the 
skin, oral cavity, and germinal tracts. Growing 
evidence confirms a significant relevance of bac-
terial microbiota in the carcinogenesis of the 
colon, liver, breast, lung, oral cavity, and 
pancreas.

The liver receives 70% of its blood supply 
from the intestinal vein. This close functional 
relationship between the liver and GI tract results 
in constant exposure to nutrients, toxins, micro-
bial metabolites, and microbes. Various types of 
immune cells (NK cells, macrophages, lympho-
cytes) defend this organ against harmful agents 
derived from the intestine. An altered microbi-
ome may contribute to the development of hepa-
tocellular carcinoma (HCC), which is preceded 
by chronic liver disease, fibrosis, and cirrhosis 
[68]. The disrupted microbiome may drive this 
process through the loss of intestinal barrier func-

tion, the activation of the NF-κB pathway, the 
production of pro-inflammatory cytokines, and 
increased anti-apoptotic signals.

Pancreatic cancer is an aggressive cancer type 
with low therapeutic success and survival rate. 
Periodontal disease, low oral hygiene, obesity, 
smoking, and alcohol consumption are well-
known risk factors for pancreatic cancer, because 
they facilitate the translocation of bacteria 
through disrupted barrier layers. Bacteria can 
reach the pancreas through the circulation. 
Furthermore, although the pancreas does not 
have a microbiome, carcinogenesis of this organ 
is enhanced by distant dysbiotic microbiota [6], 
through the involvement of inflammatory 
responses, LPS expression, and TLR4 activation 
[69].

About 90% of all lung cancer cases are attrib-
uted to smoking, while only 15% of smokers 
develop lung cancer, suggesting other mecha-
nisms and influences. The interface of the lung is 
continuously connected to the outside environ-
ment, and the microbiota of the lung reflect the 
microaspiration of oral microbiota. The lung has 
a unique microbiome with different species of 
Proteobacteria. The connection between lung 
cancer and chronic pulmonary disease is assigned 
to toxic pro-inflammatory and neoplasia-causing 
compounds. Different bacteria species, such as 
Moraxella catarrhalis, Haemophilus influenza, 
and Streptococcus pneumoniae, are associated 
with 50% of chronic pulmonary disease, and 

Fig. 10.4  Targeting the microbiome for modulation of carcinogenesis
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their presence can elicit chronic inflammatory 
responses [70].

The oral cavity harbors diverse individual 
microbiota. Moreover, the composition of the 
microbiota differs between microenvironments 
within the oral cavity; the lateral and dorsal 
tongue and tooth surface all have unique micro-
bial communities. The normal oral microbiome 
includes Actinobacteria, Bacteroidetes, 
Firmicutes, Fusobacteria, Haemophilus, 
Neisseria, Prevotella, Proteobacteria, 
Streptococcus, and Veillonella species. 
Capnocytophaga gingivalis, Prevotella melanin-
ogenica, and Streptococcus mitis are found in 
oral squamous cell carcinoma (OSCC) and are 
considered biomarkers of this disease. Risk fac-
tors for OSCC, which are connected to anaero-
bic, Gram-negative bacteria that liberate 
inflammatory markers, include smoking, heavy 
alcohol consumption, poor oral hygiene, and 
periodontal disease [71].

Genetic factors, infection, inflammation, and 
diet are well-known risk factors for colorectal 
carcinoma (CRC). CRC is associated with other 
diseases, such as inflammatory bowel disease, 
autoimmune, allergic reactions, obesity, and dia-
betes. Despite the great diversity of bacterial spe-
cies of the GI tract, CRC is closely related to 
changes in the diversity and activity of microbes. 
Microbes produce metabolically active mole-
cules that alter homeostasis or carcinogenesis 
[72]. The microbiota may contribute to CRC 
through different mechanisms that result in an 
imbalance between cellular proliferation and 
apoptosis pathways, such as PRR signaling and 
inflammation, metabolites that induce DNA dam-
age and chromosome instability, or the loss of 
protective metabolites (due to microbial dysbio-
sis), such as SCFAs, secondary bile acids, or bio-
active amines [73].

Recent research showed a strong correlation 
between gut microbiome dysbiosis and breast 
cancer. In addition to the gut microbiome, the 
breast has a unique microbiome that shows dras-
tic changes in breast cancer. The microenviron-
ment of breast cancer cells is modulated by 
bacterial metabolites (SCFAs, secondary bile 

acids, amino acid degradation products, and 
estrogen derivatives) that are produced in the 
intestine and reach cancer cells of the breast via 
the circulatory system. In breast cancer, various 
pathways are disrupted or altered in addition to 
the general changes in glycolysis and mitochon-
drial function, including glutamine, fatty acid, 
cholesterol metabolism, protein translation, and 
glutamine-serine pathways in cancer cells. These 
changes are the consequence of the rearrange-
ment of a complex homeostatic system and 
energy sensors and lead to changes in cell prolif-
eration and angiogenesis. Microbial dysbiosis 
occurs in both the fecal flora and the breast 
microbiome in breast cancer [20]. Fecal samples 
of breast cancer patients contain increased levels 
of Clostridiaceae, Faecalibacterium, and 
Ruminococcaceae and decreased levels of Dorea 
and Lachnospiraceae species [18]. Moreover, the 
microbiota composition differs not only between 
cancerous persons and healthy volunteers but 
also between breast cancer stages and grades and 
according to different tumor subtypes (triple-
negative breast cancer associated with unique 
microbiome) [74]. For example, patients with 
grade III cancer have an increased number of 
Blautia species, compared with grade I patients, 
and samples from stage II/III showed elevated 
absolute numbers of Bacteroidetes, Clostridium, 
and Blautia species [75].

10.11	 �Future Prospects

The recent emergence of studies on the microbi-
ome in various diseases highlights the impor-
tance of bacterial dysbiosis in different cancers. 
Despite the increasing literature on colorectal 
cancer, the data and observations on those can-
cers that are not in direct contact with the (gut) 
microbiome are limited and the available studies 
are often restricted to observational studies. 
Hence, mechanistic studies are largely missing. 
Minor microbiome compartments are understud-
ied, in terms of the number of bacteria (e.g., 
lower airways). These caveats will need to be 
filled in the future.
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The currently available data suggest that pre-
biotics and probiotics may have beneficial effects 
in restoring/preventing the microbiome dysbio-
sis, but these findings will have to be assessed in 
well-controlled clinical studies. Along those 
same lines, the use of antibiotics in cancer 
patients will need to be assessed in detail. Finally, 
the microbiome-drug interactions, a key element 
in cancer-related personalized medicine, will 
need to be precisely mapped.
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