1,858 research outputs found

    Basal paravian functional anatomy illuminated by high-detail body outline

    Get PDF
    Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit.published_or_final_versio

    Peripheral arterial volume distensibility changes with applied external pressure: significant difference between arteries with different compliance

    Get PDF
    This study aimed to quantify the different effect of external cuff pressure on arterial volume distensibility between peripheral arteries with different compliance. 30 healthy subjects were studied with the arm at two positions (0° and 45° from the horizontal level) to introduce different compliance of arteries. The electrocardiogram and finger and ear photoplethysmograms were recorded simultaneously under five external cuff pressures (0, 10, 20, 30 and 40 mmHg) on the whole arm to obtain arterial volume distensibility. With the applied external cuff pressures of 10, 20, 30 and 40 mmHg, the overall changes in arterial volume distensibility referred to those without external pressure were 0.010, 0.029, 0.054 and 0.108% per mmHg for the arm at the horizontal level, and 0.026, 0.071, 0.170 and 0.389% per mmHg for the arm at 45° from the horizontal level, confirming the non-linearity between arterial volume distensibility and external pressure. More interestingly, the significant differences in arterial volume distensibility changes were observed between the two arm positions, which were 0.016, 0.043, 0.116 and 0.281% per mmHg (all P < 0.01). Our findings demonstrated that arterial volume distensibility of peripheral arm arteries increased with external pressure, with a greater effect for more compliant arteries

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disorder characterised by selective loss of motor neurons leading to fatal paralysis. Current therapeutic approaches are limited in their effectiveness. Substantial advances in understanding ALS disease mechanisms has come from the identification of pathogenic mutations in dominantly inherited familial ALS (FALS). We previously reported a coding mutation in D-amino acid oxidase (DAOR199W) associated with FALS. DAO metabolises D-serine, an essential co-agonist at the N-Methyl-D-aspartic acid glutamate receptor subtype (NMDAR). Using primary motor neuron cultures or motor neuron cell lines we demonstrated that expression of DAOR199W, promoted the formation of ubiquitinated protein aggregates, activated autophagy and increased apoptosis. The aim of this study was to characterise the effects of DAOR199W in vivo, using transgenic mice overexpressing DAOR199W. Marked abnormal motor features, e.g. kyphosis, were evident in mice expressing DAOR199W, which were associated with a significant loss (19%) of lumbar spinal cord motor neurons, analysed at 14 months. When separated by gender, this effect was greater in females (26%; p< 0.0132). In addition, we crossed the DAOR199W transgenic mouse line with the SOD1G93A mouse model of ALS to determine whether the effects of SOD1G93A were potentiated in the double transgenic line (DAOR199W/SOD1G93A). Although overall survival was not affected, onset of neurological signs was significantly earlier in female double transgenic animals than their female SOD1G93A littermates (125 days vs 131 days, P = 0.0239). In summary, some significant in vivo effects of DAOR199W on motor neuron function (i.e. kyphosis and loss of motor neurons) were detected which were most marked in females and could contribute to the earlier onset of neurological signs in double transgenic females compared to SOD1G93A littermates, highlighting the importance of recognizing gender effects present in animal models of ALS

    Genetic predictors of participation in optional components of UK Biobank

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this record.Data availability: This research has been conducted using the UK Biobank resource under application number 9072. The GWAS summary statistics generated in this study have been deposited in the GWAS catalogue (https://www.ebi.ac.uk/gwas/) under accession codes GCST90012790, GCST90012791, GCST90012792, GCST90012793, GCST90012794. All other data are available within the article or from the authors upon request.Large studies such as UK Biobank are increasingly used for GWAS and Mendelian randomization (MR) studies. However, selection into and dropout from studies may bias genetic and phenotypic associations. We examine genetic factors affecting participation in four optional components in up to 451,306 UK Biobank participants. We used GWAS to identify genetic variants associated with participation, MR to estimate effects of phenotypes on participation, and genetic correlations to compare participation bias across different studies. 32 variants were associated with participation in one of the optional components (P < 6 × 10 ), including loci with links to intelligence and Alzheimer’s disease. Genetic correlations demonstrated that participation bias was common across studies. MR showed that longer educational duration, older menarche and taller stature increased participation, whilst higher levels of adiposity, dyslipidaemia, neuroticism, Alzheimer’s and schizophrenia reduced participation. Our effect estimates can be used for sensitivity analysis to account for selective participation biases in genetic or non-genetic analyses. −9Academy of Medical Sciences (AMS)Medical Research Council (MRC

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Bilayer manganites: polarons in the midst of a metallic breakdown

    Full text link
    The exact nature of the low temperature electronic phase of the manganite materials family, and hence the origin of their colossal magnetoresistant (CMR) effect, is still under heavy debate. By combining new photoemission and tunneling data, we show that in La{2-2x}Sr{1+2x}Mn2O7 the polaronic degrees of freedom win out across the CMR region of the phase diagram. This means that the generic ground state is that of a system in which strong electron-lattice interactions result in vanishing coherent quasi-particle spectral weight at the Fermi level for all locations in k-space. The incoherence of the charge carriers offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopic data. The stacking number N is the key factor for true metallic behavior, as an intergrowth-driven breakdown of the polaronic domination to give a metal possessing a traditional Fermi surface is seen in the bilayer system.Comment: 7 pages, 2 figures, includes supplementary informatio

    Multi-dimension Tensor Factorization Collaborative Filtering Recommendation for Academic Profiles

    Get PDF
    The choice of academic itineraries and/or optional subjects to attend is not usually an easy decision since, in most cases, students lack the information, maturity, and knowledge required to make right decisions. This paper evaluates the support of Collaborative Systems for helping and guiding students in this decision-making process, considering the behavior and impact of these systems on the use of data different from the formal information the students usually use. For this purpose, the research applied the clustering based Multi-dimension Tensor Factorization approach to build a recommendation system and confirm that the increment in tensors improves the recommendation accuracy. As a result, this approach permits the user to take advantage of the contextual information to reduce the sparsity issue and increase the recommendation accuracy

    Central synapses release a resource-efficient amount of glutamate.

    Get PDF
    Why synapses release a certain amount of neurotransmitter is poorly understood. We combined patch-clamp electrophysiology with computer simulations to estimate how much glutamate is discharged at two distinct central synapses of the rat. We found that, regardless of some uncertainty over synaptic microenvironment, synapses generate the maximal current per released glutamate molecule while maximizing signal information content. Our result suggests that synapses operate on a principle of resource optimization

    1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months

    Get PDF
    We study the sudden optical and ultraviolet (UV) brightening of 1ES 1927+654, which until now was known as a narrow-line active galactic nucleus (AGN). 1ES 1927+654 was part of the small and peculiar class of "true Type-2" AGNs that lack broad emission lines and line-of-sight obscuration. Our high-cadence spectroscopic monitoring captures the appearance of a blue, featureless continuum, followed several weeks later by the appearance of broad Balmer emission lines. This timescale is generally consistent with the expected light travel time between the central engine and the broadline emission region in (persistent) broadline AGN. Hubble Space Telescope spectroscopy reveals no evidence for broad UV emission lines (e.g., C iv λ1549, C iii] λ1909, Mg ii λ2798), probably owing to dust in the broadline emission region. To the best of our knowledge, this is the first case where the lag between the change in continuum and in broadline emission of a "changing look" AGN has been temporally resolved. The nature and timescales of the photometric and spectral evolution disfavor both a change in line-of-sight obscuration and a change of the overall rate of gas inflow as driving the drastic spectral transformations seen in this AGN. Although the peak luminosity and timescales are consistent with those of tidal disruption events seen in inactive galaxies, the spectral properties are not. The X-ray emission displays a markedly different behavior, with frequent flares on timescales of hours to days, and will be presented in a companion publication
    corecore