634 research outputs found
Foot kinematics in patients with two patterns of pathological plantar hyperkeratosis
Background: The Root paradigm of foot function continues to underpin the majority of clinical foot biomechanics practice and foot orthotic therapy. There are great number of assumptions in this popular paradigm, most of which have not been thoroughly tested. One component supposes that patterns of plantar pressure and associated hyperkeratosis lesions should be associated with distinct rearfoot, mid foot, first metatarsal and hallux kinematic patterns. Our aim was to investigate the extent to which this was true.
Methods: Twenty-seven subjects with planter pathological hyperkeratosis were recruited into one of two groups.
Group 1 displayed pathological plantar hyperkeratosis only under metatarsal heads 2, 3 and 4 (n = 14). Group 2
displayed pathological plantar hyperkeratosis only under the 1st and 5th metatarsal heads (n = 13). Foot kinematics
were measured using reflective markers on the leg, heel, midfoot, first metatarsal and hallux.
Results: The kinematic data failed to identify distinct differences between these two groups of subjects, however
there were several subtle (generally <3°) differences in kinematic data between these groups. Group 1 displayed a
less everted heel, a less abducted heel and a more plantarflexed heel compared to group 2, which is contrary to
the Root paradigm.
Conclusions: There was some evidence of small differences between planter pathological hyperkeratosis groups.
Nevertheless, there was too much similarity between the kinematic data displayed in each group to classify them
as distinct foot types as the current clinical paradigm proposes
Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum
<p>Abstract</p> <p>Background</p> <p>Bacteria from the <it>Burkholderia cepacia </it>complex (Bcc) are the only group of cystic fibrosis (CF) respiratory pathogens that may cause death by an invasive infection known as cepacia syndrome. Their large genome (> 7000 genes) and multiple pathways encoding the same putative functions make virulence factor identification difficult in these bacteria.</p> <p>Methods</p> <p>A novel microarray was designed to the genome of <it>Burkholderia cenocepacia </it>J2315 and transcriptomics used to identify genes that were differentially regulated when the pathogen was grown in a CF sputum-based infection model. Sputum samples from CF individuals infected with the same <it>B. cenocepacia </it>strain as genome isolate were used, hence, other than a dilution into a minimal growth medium (used as the control condition), no further treatment of the sputum was carried out.</p> <p>Results</p> <p>A total of 723 coding sequences were significantly altered, with 287 upregulated and 436 downregulated; the microarray-observed expression was validated by quantitative PCR on five selected genes. <it>B. cenocepacia </it>genes with putative functions in antimicrobial resistance, iron uptake, protection against reactive oxygen and nitrogen species, secretion and motility were among the most altered in sputum. Novel upregulated genes included: a transmembrane ferric reductase (BCAL0270) implicated in iron metabolism, a novel protease (BCAL0849) that may play a role in host tissue destruction, an organic hydroperoxide resistance gene (BCAM2753), an oxidoreductase (BCAL1107) and a nitrite/sulfite reductase (BCAM1676) that may play roles in resistance to the host defenses. The assumptions of growth under iron-depletion and oxidative stress formulated from the microarray data were tested and confirmed by independent growth of <it>B. cenocepacia </it>under each respective environmental condition.</p> <p>Conclusion</p> <p>Overall, our first full transcriptomic analysis of <it>B. cenocepacia </it>demonstrated the pathogen alters expression of over 10% of the 7176 genes within its genome when it grows in CF sputum. Novel genetic pathways involved in responses to antimicrobial resistance, oxidative stress, and iron metabolism were revealed by the microarray analysis. Virulence factors such as the cable pilus and Cenocepacia Pathogenicity Island were unaltered in expression. However, <it>B. cenocepacia </it>sustained or increased expression of motility-associated genes in sputum, maintaining a potentially invasive phenotype associated with cepacia syndrome.</p
Using a decline in serum hCG between days 0-4 to predict ectopic pregnancy treatment success after single-dose methotrexate:a retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>The current measure of treatment efficacy of single-dose methotrexate for ectopic pregnancy, is a fall in serum hCG of ≥15% between days 4–7 of treatment, which has a positive predictive value of 93% for treatment success. Two small studies have proposed a fall in serum hCG between days 0–4 after treatment confers similar, earlier prognostic information, with positive predictive values of 100% and 88% for treatment success. We sought to validate this in a large, independent cohort because of the potentially significant clinical implications.</p> <p>Methods</p> <p>We conducted a retrospective study of women (n=206) treated with single-dose methotrexate for ectopic pregnancy (pre-treatment serum hCG levels ≤3000 IU/L) at Scottish hospitals between 2006–2011. Women were divided into two cohorts based on whether their serum hCG levels rose or fell between days 0–4 after methotrexate. Treatment outcomes of women in each cohort were compared, and the test performance characteristics calculated. This methodology was repeated for the current measure (≥15% fall in serum hCG between days 4–7 of treatment) and an alternate early measure (<20% fall in serum hCG between days 0–4 of treatment), and all three measures were compared for their ability to predict medical treatment success.</p> <p>Results</p> <p>In our cohort, the positive predictive value of the current clinical measure was 89% (95% CI 84-94%) (121/136). A falling serum hCG between days 0–4 predicted treatment success in 85% (95% CI 79-92%) of cases (94/110) and a <20% fall in serum hCG between days 0–4 predicted treatment success in 94% (95% CI 88-100%) of cases (59/63). There was no significant difference in the ability of these tests to predict medical treatment success.</p> <p>Conclusions</p> <p>We have verified that a decline in serum hCG between days 0–4 after methotrexate treatment for ectopic pregnancies, with pre-treatment serum hCG levels ≤3000 IU/L, provides an early indication of likelihood of treatment success, and performs just as well as the existing measure, which only provides prognostic information on day 7.</p
A covalently crosslinked bioink for multi-materials drop-on-demand 3D bioprinting of three-dimensional cell cultures
In vitro three-dimensional (3D) cell models have been accepted to better recapitulate aspects of in vivo organ environment than 2D cell culture. Currently, the production of these complex in vitro 3D cell models with multiple cell types and microenvironments remains challenging and prone to human error. Here we report a versatile bioink comprised of a 4-arm PEG based polymer with distal maleimide derivatives as the main ink component and a bis-thiol species as the activator that crosslinks the polymer to form the hydrogel in less than a second. The rapid gelation makes the polymer system compatible with 3D bioprinting. The ink is combined with a drop-on-demand 3D bioprinting platform consisting of eight independently addressable nozzles and high-throughput printing logic for creating complex 3D cell culture models. The combination of multiple nozzles and fast printing logic enables the rapid preparation of many complex 3D structures comprising multiple hydrogel environments in the one structure in a standard 96-well plate format. The platform compatibility for biological applications was validated using pancreatic ductal adenocarcinoma cancer (PDAC) cells with their phenotypic responses controlled by tuning the hydrogel microenvironment
Old Drugs To Treat Resistant Bugs: Methicillin-Resistant Staphylococcus aureus Isolates with mecC Are Susceptible to a Combination of Penicillin and Clavulanic Acid.
β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum β-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct β-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the β-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections.This work was supported by a Medical Research Council (MRC) Partnership Grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M. A. H.), the School of Clinical Medicine, University of Cambridge (S. J. P.), the Moredun Research Institute (R. N. Z.) and the Wellcome Trust Sanger Institute (J. P. and S. J. P.).This is the author accepted manuscript. The final version is available from American Society for Microbiology via http://dx.doi.org/10.1128/AAC.01469-1
SpeS: A Novel Superantigen and Its Potential as a Vaccine Adjuvant against Strangles.
Bacterial superantigens (sAgs) are powerful activators of the immune response that trigger unspecific T cell responses accompanied by the release of proinflammatory cytokines. Streptococcus equi (S. equi) and Streptococcus zooepidemicus (S. zooepidemicus) produce sAgs that play an important role in their ability to cause disease. Strangles, caused by S. equi, is one of the most common infectious diseases of horses worldwide. Here, we report the identification of a new sAg of S. zooepidemicus, SpeS, and show that mutation of the putative T cell receptor (TCR)-binding motif (YAY to IAY) abrogated TCR-binding, whilst maintaining interaction with major histocompatibility complex (MHC) class II molecules. The fusion of SpeS and SpeSY39I to six S. equi surface proteins using two different peptide linkers was conducted to determine if MHC class II-binding properties were maintained. Proliferation assays, qPCR and flow cytometry analysis showed that SpeSY39I and its fusion proteins induced less mitogenic activity and interferon gamma expression when compared to SpeS, whilst retaining Antigen-Presenting Cell (APC)-binding properties. Our data suggest that SpeSY39I-surface protein fusions could be used to direct vaccine antigens towards antigen-presenting cells in vivo with the potential to enhance antigen presentation and improve immune responses
Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.
Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance
Draft Genome Sequences of the Type Strains of Actinobacillus indolicus (46K2C) and Actinobacillus porcinus (NM319), Two NAD-Dependent Bacterial Species Found in the Respiratory Tract of Pigs.
We report here the draft genome sequences of the type strains of Actinobacillus indolicus (46K2C) and Actinobacillus porcinus (NM319). These NAD-dependent bacterial species are frequently found in the upper respiratory tract of pigs and are occasionally associated with lung pathology
A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals.
UNLABELLED: Methicillin-resistant Staphylococcus aureus (MRSA) is a global human health problem causing infections in both hospitals and the community. Companion animals, such as cats, dogs, and horses, are also frequently colonized by MRSA and can become infected. We sequenced the genomes of 46 multilocus sequence type (ST) 22 MRSA isolates from cats and dogs in the United Kingdom and compared these to an extensive population framework of human isolates from the same lineage. Phylogenomic analyses showed that all companion animal isolates were interspersed throughout the epidemic MRSA-15 (EMRSA-15) pandemic clade and clustered with human isolates from the United Kingdom, with human isolates basal to those from companion animals, suggesting a human source for isolates infecting companion animals. A number of isolates from the same veterinary hospital clustered together, suggesting that as in human hospitals, EMRSA-15 isolates are readily transmitted in the veterinary hospital setting. Genome-wide association analysis did not identify any host-specific single nucleotide polymorphisms (SNPs) or virulence factors. However, isolates from companion animals were significantly less likely to harbor a plasmid encoding erythromycin resistance. When this plasmid was present in animal-associated isolates, it was more likely to contain mutations mediating resistance to clindamycin. This finding is consistent with the low levels of erythromycin and high levels of clindamycin used in veterinary medicine in the United Kingdom. This study furthers the "one health" view of infectious diseases that the pathogen pool of human and animal populations are intrinsically linked and provides evidence that antibiotic usage in animal medicine is shaping the population of a major human pathogen. IMPORTANCE: Methicillin-resistant Staphylococcus aureus (MRSA) is major problem in human medicine. Companion animals, such as cats, dogs, and horses, can also become colonized and infected by MRSA. Here, we demonstrate that a shared population of an important and globally disseminated lineage of MRSA can infect both humans and companion animals without undergoing host adaptation. This suggests that companion animals might act as a reservoir for human infections. We also show that the isolates from companion animals have differences in the presence of certain antibiotic resistance genes. This study furthers the "one health" view of infectious diseases by demonstrating that the pool of MRSA isolates in the human and animal populations are shared and highlights how different antibiotic usage patterns between human and veterinary medicine can shape the population of bacterial pathogens.This work was supported by a Medical Research Council Partnership
grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M.A.H.), the School of Clinical Medicine,
University of Cambridge (S.J.P.), the Moredun Research Institute, and the
Wellcome Trust Sanger Institute (J.P. and S.J.P). S.J.P. receives support
from the NIHR Cambridge Biomedical Research Centre. M.T.G.H.,
S.R.H. and J.P. were funded by Wellcome Trust grant no. 098051.This is the final published version distributed under a Creative Commons Attribution License 2.0, which can also be found on the publisher's website at: http://mbio.asm.org/content/5/3/e00985-13.full.pdf+htm
- …