200 research outputs found

    Minimising the impact of disturbances in future highly-distributed power systems

    Get PDF
    It is expected that future power systems will require radical distributed control approaches to accommodate the significant expansion of renewable energy sources and other flexible grid devices. It is important to rapidly and efficiently respond to disturbances by, for example: utilising adaptive, wide-area protection schemes; proactive control of available grid resources (such as managing the fault level contribution from converter-interfaced generation) to optimise protection functionality; and taking post-fault action to ensure protection stability and optimal system operation. This paper analyses and highlights the protection functions which will be especially important to minimising the impact of disturbances in future power systems. These functions include: fast-acting wide-area protection methods using Phasor Measurement Units (PMUs); adaptive and “self-organising” protection under varying system conditions; protection with distributed Intelligent Electronic Devices (IEDs); enhanced fault ride-through; and pattern recognition based schemes. In particular, the paper illustrates how the increased availability of measurements and communications can enable improved protection functionality within distribution systems, which is especially important to accommodate the connection of highly-distributed generation at medium- and low-voltages

    Validation of the porous-medium approach to model interlayer-cooled 3D-chip stacks

    Get PDF
    Interlayer cooling is the only heat removal concept which scales with the number of active tiers in a vertically integrated chip stack. In this work, we numerically and experimentally characterize the performance of a three tier chip stack with a footprint of 1cm2. The implementation of 100ÎŒm pitch area array interconnect compatible heat transfer structures results in a maximal junction temperature increase of 54.7K at 1bar pressure drop with water as coolant for 250W/cm2 hot-spot and 50W/cm2 background heat flux. The total power removed was 390W which corresponds to a 3.9kW/cm3 volumetric heat flow. An efficient multi-scale modeling approach is proposed to predict the temperature response in the complete chip stack. The experimental validation confirmed an accuracy of +/- 10%. Detailed sub-domain modeling with parameter extraction is the base for the system level porous-media calculations with thermal field-coupling between solid – fluid and solid – solid interfaces. Furthermore, the strength and weakness of microchannel and pin fin heat transfer geometries in 2-port and 4-port fluid architectures is identified. Microchannels efficiently mitigate hot spots by distributing the dissipated heat to multiple cavities due to their low porosity. Pin fins with improved permeability and convective heat dissipation are advantageous at small power map contrast and aligned hot spots on the different tiers. Large stacks of 4cm2 can be cooled sufficiently by the 4-port fluid delivery architecture. The flow rate is improved four times compared to the 2-port fluid manifold. The non-uniformity of the flow in case of the 4-port demands a more careful floor- planning with hot spots placed in the chip stack corners. This is especially true in case of communicating heat transfer geometries such as pin fin structures with zero fluid velocity in the stack center. This large velocity contrast can be reduced by the implementation of non- communicating microchannels

    Tannin- caprolactam and Tannin- PEG formulations as outdoor wood preservatives: Weathering properties

    Get PDF
    International audienceAbstractKey messageThis article presents the leaching, fire and weathering resistance improvements of samples treated with tannin-based wood preservatives added of caprolactam. PEG-added formulations show limited applicability. The FT-IR and13C-NMR analyses of the caprolactam-added formulations show some evidences of copolymerization.ContextTannin-boron wood preservatives are known for their high resistance against leaching, biological attacks, fire as well as for the good mechanical properties that they impart to wood. These properties promoted these formulations for being a candidate for the protection of green buildings. However, the low elasticity of these polymers and their dark colour implied limited weathering resistances.AimsThe aim of the study is to find suitable additives for tannin-based formulations to overcome their limited weathering resistances, without compromising the other properties.MethodsTreatment, leaching and fire tests, dimensional stability as well as artificial and natural weathering of the timber treated with caprolactam-added and PEG-added formulations were performed. FT-IR and 13C-NMR of the formulations were presented.ResultsThe presence of caprolactam improved the properties of the formulation with particularly significant results in terms of resistance against leaching and dimensional stability. These enhancements were imparted also to the weathering resistance of the tannin-caprolactam formulations. Indeed, the colour changes during the artificial and natural exposures were stable for longer periods. FT-IR and 13C-NMR investigations of the advanced formulations were led, and covalent copolymerization of the caprolactam with the tannin-hexamine polymer was observed.ConclusionThe tannin formulations with caprolactam improved the durability of the wood specimens, while the PEG-tannin presented strong application drawbacks

    Impact of clinicopathological variables on laparoscopic hysterectomy complications, a tertiary center experience

    Get PDF
    Objectives: To analyze intraoperative and postoperative complications according to Clavian-Dindo Classification (CDC) and evaluate the influence of clinicopathological features on the feasibility and safety of total laparoscopic hysterectomy (TLH) in patients that underwent surgery in a tertiary center. Material and methods: We retrospectively reviewed the database of 469 patients that underwent surgery for patients who underwent extra facial TLH from 2013 to 2020. Results: A total of 86 (18.3%) peri-postoperative complications were observed. The incidence of intraoperative complications was 2% (n = 10). The overall conversion rate to open surgery was 1.9% (n = 9). A total of 76 postoperative complications were observed in 61 patients (14.3%). The incidence of minor (Grade I [n = 16, 3.4%] and II [n = 42, 8.9%]) and major complications (Grade III [n = 15, 3.2%], IV [n = 2, 0.4%] and V [n = 1, 0.2 %]) were 12.3% and 3.8%, respectively. A higher BMI and performing surgery at the first step of learning are found to be associated with intraoperative and postoperative complications (p < 0.05). Postoperative complications related to having a history of the cesarean section, additional comorbidities, and uterine weight ≄ 300 g (p < 0.05). Conclusions: The implementation of TLH by experienced surgeons appears to have remarkable advantages over open surgery. However, the risk factor for complications should be taken into account by surgeons in the learning curve in selecting the appropriate patient for surgery.

    Novel and Recurrent Mutations of WISP3 in Two Chinese Families with Progressive Pseudorheumatoid Dysplasia

    Get PDF
    BACKGROUND: The WNT1-inducible signaling pathway protein 3 (WISP3), which belongs to the CCN (cysteine-rich protein 61, connective tissue growth factor, nephroblastoma overexpressed) family, is a secreted cysteine-rich matricellular protein that is involved in chondrogenesis, osteogenesis and tumorigenesis. WISP3 gene mutations are associated with progressive pseudorheumatoid dysplasia (PPD, OMIM208230), an autosomal recessive genetic disease that is characterized by the swelling of multiple joints and disproportionate dwarfism. METHODOLOGY/PRINCIPAL FINDINGS: Four PPD patients from two unrelated Chinese families were recruited for this study. The clinical diagnosis was confirmed by medical history, physical examinations, laboratory results and radiological abnormalities. WISP3 mutations were detected by direct DNA sequence analysis. In total, four different mutations were identified, which consisted of two missense mutations, one deletion and one insertion that spanned exons 3, 5 and 6 of the WISP3 gene. One of the missense mutations (c.342T>G/p.C114W) and a seven-base pair frameshift deletion (c.716_722del/p.E239fs*16) were novel. The other missense mutation (c.1000T>C/p. S334P) and the insertion mutation (c.866_867insA/p.Q289fs*31) had previously been identified in Chinese patients. All four cases had a compound heterozygous status, and their parents were heterozygous carriers of these mutations. CONCLUSIONS/SIGNIFICANCE: The results of our study expand the spectrum of WISP3 mutations that are associated with PPD and further elucidate the function of WISP3

    Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Get PDF
    BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function

    Overweight status is associated with extensive signs of microvascular dysfunction and cardiovascular risk

    Get PDF
    The aim of this present study was to investigate if overweight individuals exhibit signs of vascular dysfunction associated with a high risk for cardiovascular disease (CVD). One hundred lean and 100 overweight participants were recruited for the present study. Retinal microvascular function was assessed using the Dynamic Retinal Vessel Analyser (DVA), and systemic macrovascular function by means of flow-mediated dilation (FMD). Investigations also included body composition, carotid intimal-media thickness (c-IMT), ambulatory blood pressure monitoring (BP), fasting plasma glucose, triglycerides (TG), cholesterol levels (HDL-C and LDL-C), and plasma von Willebrand factor (vWF). Overweight individuals presented with higher right and left c-IMT (p = 0.005 and p = 0.002, respectively), average 24-h BP values (all p <0.001), plasma glucose (p = 0.008), TG (p = 0.003), TG: HDL-C ratio (p = 0.010), and vWF levels (p = 0.004). Moreover, overweight individuals showed lower retinal arterial microvascular dilation (p = 0.039) and baseline-corrected flicker (bFR) responses (p = 0.022), as well as, prolonged dilation reaction time (RT, p = 0.047). These observations emphasise the importance of vascular screening and consideration of preventive interventions to decrease vascular risk in all individuals with adiposity above normal range

    The Role of Methylation in the Intrinsic Dynamics of B- and Z-DNA

    Get PDF
    Methylation of cytosine at the 5-carbon position (5mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural models of the dinucleotide d(GC)5 repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA. However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition, methylation decreased the free energy difference between B- and Z-DNA. Comparisons of α/γ backbone torsional angles showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over unmethylated, B-DNA and may be a contributing factor to biological function

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl
    • 

    corecore