275 research outputs found

    Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis

    Full text link
    In bulk systems, molecules are routinely identified by their vibrational spectrum using Raman or infrared spectroscopy. In recent years, vibrational excitation lines have been observed in low-temperature conductance measurements on single molecule junctions and they can provide a similar means of identification. We present a method to efficiently calculate these excitation lines in weakly coupled, gateable single-molecule junctions, using a combination of ab initio density functional theory and rate equations. Our method takes transitions from excited to excited vibrational state into account by evaluating the Franck-Condon factors for an arbitrary number of vibrational quanta, and is therefore able to predict qualitatively different behaviour from calculations limited to transitions from ground state to excited vibrational state. We find that the vibrational spectrum is sensitive to the molecular contact geometry and the charge state, and that it is generally necessary to take more than one vibrational quantum into account. Quantitative comparison to previously reported measurements on pi-conjugated molecules reveals that our method is able to characterize the vibrational excitations and can be used to identify single molecules in a junction. The method is computationally feasible on commodity hardware.Comment: 9 pages, 7 figure

    Tricarbonylrhenium(I) halide complexes of chiral non-racemic 2-(dioxolanyl)-(dioxanyl)pyridine ligands: synthesis, NMR and DFT calculations.

    Get PDF
    The chiral non-racemic O/N/O donor ligands 2-[(4R,5R)-4,5-dimethyl-1,3-dioxolan-2-yl]-6-[(4R,6R)-4,6-dimethyl-1,3-dioxan-2-yl]pyridine and 2-[(4R,5R)-4,5-dimethyl-1,3-dioxolan-2-deuteryl]-6-[(4R,6R)-4,6-dimethyl-1,3-dioxan-2-yl]pyridine were prepared in a stepwise fashion form 2,6-dibromopyridine. Reaction with the pentacarbonylhalogenorhenium(I) compounds yields the complexes [ReX(CO)3L], in which the ligands act in a N/O bidentate chelate fashion. There are eight possible diastereoisomers, three of which are observable in solution. DFT calculations indicate that the relative stability of the diastereoisomers is SR5>RR5>SS5≈RS5>RS6>SS6>RR6>SR6. Above ambient temperature, a dynamic process leads to the exchange of 2 of the 3 diastereoisomers: the free energy of activation is ca. 79 kJ mol−1. The results of the DFT calculations and the magnitude of ΔG‡ suggest the dynamic process to be the flip of the co-ordinated acetal ring. DFT calculations on the [ReX(CO)3] complexes of chiral non-racemic 2-(dioxolanyl)-6-(dioxanyl)pyridines, in which the ligands coordinate in a bidentate N/O fashion, indicate that binding of the five-membered dioxolanyl ring is strongly favoured over that of the six-membered dioxanyl ring. In solution 3 of the 8 possible diastereoisomers are observed, two of which undergo exchange above ambient temperature

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals

    Spatio-Temporal Interpolation Is Accomplished by Binocular Form and Motion Mechanisms

    Get PDF
    Spatio-temporal interpolation describes the ability of the visual system to perceive shapes as whole figures (Gestalts), even if they are moving behind narrow apertures, so that only thin slices of them meet the eye at any given point in time. The interpolation process requires registration of the form slices, as well as perception of the shape's global motion, in order to reassemble the slices in the correct order. The commonly proposed mechanism is a spatio-temporal motion detector with a receptive field, for which spatial distance and temporal delays are interchangeable, and which has generally been regarded as monocular. Here we investigate separately the nature of the motion and the form detection involved in spatio-temporal interpolation, using dichoptic masking and interocular presentation tasks. The results clearly demonstrate that the associated mechanisms for both motion and form are binocular rather than monocular. Hence, we question the traditional view according to which spatio-temporal interpolation is achieved by monocular first-order motion-energy detectors in favour of models featuring binocular motion and form detection

    The role of configurality in the Thatcher illusion: an ERP study.

    Get PDF
    The Thatcher illusion (Thompson in Perception, 9, 483-484, 1980) is often explained as resulting from recognising a distortion of configural information when 'Thatcherised' faces are upright but not when inverted. However, recent behavioural studies suggest that there is an absence of perceptual configurality in upright Thatcherised faces (Donnelly et al. in Attention, Perception & Psychophysics, 74, 1475-1487, 2012) and both perceptual and decisional sources of configurality in behavioural tasks with Thatcherised stimuli (Mestry, Menneer et al. in Frontiers in Psychology, 3, 456, 2012). To examine sources linked to the behavioural experience of the illusion, we studied inversion and Thatcherisation of faces (comparing across conditions in which no features, the eyes, the mouth, or both features were Thatcherised) on a set of event-related potential (ERP) components. Effects of inversion were found at the N170, P2 and P3b. Effects of eye condition were restricted to the N170 generated in the right hemisphere. Critically, an interaction of orientation and eye Thatcherisation was found for the P3b amplitude. Results from an individual with acquired prosopagnosia who can discriminate Thatcherised from typical faces but cannot categorise them or perceive the illusion (Mestry, Donnelly et al. in Neuropsychologia, 50, 3410-3418, 2012) only differed from typical participants at the P3b component. Findings suggest the P3b links most directly to the experience of the illusion. Overall, the study showed evidence consistent with both perceptual and decisional sources and the need to consider both in relation to configurality

    Newly uncovered physics of MHD instabilities using 2-D electron cyclotron emission imaging system in toroidal plasmas

    Get PDF
    Validation of physics models using the newly uncovered physics with a 2-D electron cyclotron emission imaging (ECEi) system for magnetic fusion plasmas has either enhanced the confidence or substantially improved the modeling capability. The discarded "full reconnection model" in sawtooth instability is vindicated and established that symmetry and magnetic shear of the 1/1 kink mode are critical parameters in sawtooth instability. For the 2/1 instability, it is demonstrated that the 2-D data can determine critical physics parameters with a high confidence and the measured anisotropic distribution of the turbulence and its flow in presence of the 2/1 island is validated by the modelled potential and gyro-kinetic calculation. The validation process of the measured reversed-shear Alfveneigenmode (RSAE) structures has improved deficiencies of prior models. The 2-D images of internal structure of the ELMs and turbulence induced by the resonant magnetic perturbation (RMP) have provided an opportunity to establish firm physics basis of the ELM instability and role of RMPs. The importance of symmetry in determining the reconnection time scale and role of magnetic shear of the 1/1 kink mode in sawtooth instability may be relevant to the underlying physics of the violent kink instability of the filament ropes in a solar flare

    Risk factors for methamphetamine use in youth: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methamphetamine (MA) is a potent stimulant that is readily available. Its effects are similar to cocaine, but the drug has a profile associated with increased acute and chronic toxicities. The objective of this systematic review was to identify and synthesize literature on risk factors that are associated with MA use among youth.</p> <p>More than 40 electronic databases, websites, and key journals/meeting abstracts were searched. We included studies that compared children and adolescents (≤ 18 years) who used MA to those who did not. One reviewer extracted the data and a second checked for completeness and accuracy. For discrete risk factors, odds ratios (OR) were calculated and when appropriate, a pooled OR with 95% confidence intervals (95% CI) was calculated. For continuous risk factors, mean difference and 95% CI were calculated and when appropriate, a weighted mean difference (WMD) and 95% CI was calculated. Results were presented separately by comparison group: low-risk (no previous drug abuse) and high-risk children (reported previous drug abuse or were recruited from a juvenile detention center).</p> <p>Results</p> <p>Twelve studies were included. Among low-risk youth, factors associated with MA use were: history of heroin/opiate use (OR = 29.3; 95% CI: 9.8–87.8), family history of drug use (OR = 4.7; 95% CI: 2.8–7.9), risky sexual behavior (OR = 2.79; 95% CI: 2.25, 3.46) and some psychiatric disorders. History of alcohol use and smoking were also significantly associated with MA use. Among high-risk youth, factors associated with MA use were: family history of crime (OR = 2.0; 95% CI: 1.2–3.3), family history of drug use (OR = 4.7; 95% CI: 2.8–7.9), family history of alcohol abuse (OR = 3.2; 95% CI: 1.8–5.6), and psychiatric treatment (OR = 6.8; 95% CI: 3.6–12.9). Female sex was also significantly associated with MA use.</p> <p>Conclusion</p> <p>Among low-risk youth, a history of engaging in a variety of risky behaviors was significantly associated with MA use. A history of a psychiatric disorder was a risk factor for MA for both low- and high-risk youth. Family environment was also associated with MA use. Many of the included studies were cross-sectional making it difficult to assess causation. Future research should utilize prospective study designs so that temporal relationships between risk factors and MA use can be established.</p

    Hemotin, a regulator of phagocytosis encoded by a small ORF and xonserved across metazoans

    Get PDF
    Translation of hundreds of small ORFs (smORFs) of less than 100 amino acids has recently been revealed in vertebrates and Drosophila. Some of these peptides have essential and conserved cellular functions. In Drosophila, we have predicted a particular smORF class encoding ~80 aa hydrophobic peptides, which may function in membranes and cell organelles. Here, we characterise hemotin, a gene encoding an 88aa transmembrane smORF peptide localised to early endosomes in Drosophila macrophages. hemotin regulates endosomal maturation during phagocytosis by repressing the cooperation of 14-3-3ζ with specific phosphatidylinositol (PI) enzymes. hemotin mutants accumulate undigested phagocytic material inside enlarged endo-lysosomes and as a result, hemotin mutants have reduced ability to fight bacteria, and hence, have severely reduced life span and resistance to infections. We identify Stannin, a peptide involved in organometallic toxicity, as the Hemotin functional homologue in vertebrates, showing that this novel regulator of phagocytic processing is widely conserved, emphasizing the significance of smORF peptides in cell biology and disease

    A Superconducting Instability in the Infinite-U Anderson Lattice in the Presence of Crystal Electric Fields

    Full text link
    We report evidence of a superconducting instability (of T1gT_{1g} symmetry) in the infinite-U Anderson lattice in the presence of crystal fields of cubic symmetry. We assume a lattice of 4f4f sites, each with a total angular momentum of J=5/2J=5/2 that is split by crystal fields into a low-lying doublet of Γ7\Gamma_7 symmetry and an excited quartet of Γ8\Gamma_8 symmetry. Slave Bosons on the 4f4f sites create and destroy 4f04f^0 configurations and Lagrange multipliers at each 4f4f site enforce the occupancy constraint due to the infinite Coulomb repulsion. Quasiparticle interactions are due to exchange of 4f4f density fluctuations, which are represented by fluctuations in the slave Bosons and Lagrange multipliers. We use the so-called analytic tetrahedron method to calculate the dressed (to order 1/N) Boson Green functions. In weak couping, the exchange of the dressed Bosons gives rise to a superconducting instability of T1gT_{1g}, xy(x2y2)xy(x^2-y^2), symmetry. The A1gA_{1g}, ``s-wave'', channel has strongly repulsive interactions and hence no pairing instability. The T2gT_{2g} channel exhibits weakly repulsive interactions. Average quasiparticle interactions in the EgE_g, x2y2x^2-y^2, 3z2r23z^2-r^2, channel fluctuate strongly as a function of the number of tetrahedra used to calculate the Bosonic Green functions,Comment: 66 pages+ 17 postscript figures, LATE
    corecore