365 research outputs found

    Foreign Direct Investments in Business Services: Transforming the Visegrád Four Region into a Knowledge-based Economy?

    Get PDF
    Foreign direct investments (FDIs) in the service sector are widely attributed an important role in bringing more skill-intensive activities into the Visegrad Four (V4). This region—comprising Poland, the Czech Republic, Hungary and Slovakia—relied heavily on FDIs in manufacturing, which was often found to generate activities with limited skill content. This contribution deconstructs the chaotic concept of “business services” by analysing the actual nature of service sector activities outsourced and offshored to the V4. Using the knowledge-based economy (KBE) as a benchmark, the paper assesses the potential of service sector outsourcing in contributing to regional competitiveness by increasing the innovative capacity. It also discusses the role of state policies towards service sector FDI (SFDI). The analysis combines data obtained from case studies undertaken in service sector outsourcing projects in V4 countries. Moreover, it draws on interviews with senior employees of investment promotion agencies and publicly available data and statistics on activities within the service sector in the region. It argues that the recent inward investments in business services in the V4 mainly utilize existing local human capital resources, and their contribution to the development of the KBE is limited to employment creation and demand for skilled labour

    A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    Full text link
    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito Koumoto and Takao Mori, Springer Series in Materials Science Volume 182 (2013

    A co-designed mHealth programme to support healthy lifestyles in Māori and Pasifika peoples in New Zealand (OL@-OR@):A cluster-randomised controlled trial

    Get PDF
    © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: The OL@-OR@ mobile health programme was co-designed with Māori and Pasifika communities in New Zealand, to support healthy lifestyle behaviours. We aimed to determine whether use of the programme improved adherence to health-related guidelines among Māori and Pasifika communities in New Zealand compared with a control group on a waiting list for the programme. Methods: The OL@-OR@ trial was a 12-week, two-arm, cluster-randomised controlled trial. A cluster was defined as any distinct location or setting in New Zealand where people with shared interests or contexts congregated, such as churches, sports clubs, and community groups. Members of a cluster were eligible to participate if they were aged 18 years or older, had regular access to a mobile device or computer, and had regular internet access. Clusters of Māori and of Pasifika (separately) were randomly assigned (1:1) to either the intervention or control condition. The intervention group received the OL@-OR@ mHealth programme (smartphone app and website). The control group received a control version of the app that only collected baseline and outcome data. The primary outcome was self-reported adherence to health-related guidelines, which were measured with a composite health behaviour score (of physical activity, smoking, alcohol intake, and fruit and vegetable intake) at 12 weeks. The secondary outcomes were self-reported adherence to health-related behaviour guidelines at 4 weeks; self-reported bodyweight at 12 weeks; and holistic health and wellbeing status at 12 weeks, in all enrolled individuals in eligible clusters; and user engagement with the app, in individuals allocated to the intervention. Adverse events were not collected. This study is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12617001484336. Findings: Between Jan 24 and Aug 14, 2018, we enrolled 337 Māori participants from 19 clusters and 389 Pasifika participants from 18 clusters (n=726 participants) in the intervention group and 320 Māori participants from 15 clusters and 405 Pasifika participants from 17 clusters (n=725 participants) in the control group. Of these participants, 227 (67%) Māori participants and 347 (89%) Pasifika participants (n=574 participants) in the intervention group and 281 (88%) Māori participants and 369 (91%) Pasifika participants (n=650 participants) in the control group completed the 12-week follow-up and were included in the final analysis. Relative to baseline, adherence to health-related behaviour guidelines increased at 12 weeks in both groups (315 [43%] of 726 participants at baseline to 329 [57%] of 574 participants in the intervention group; 331 [46%] of 725 participants to 369 [57%] of 650 participants in the control group); however, there was no significant difference between intervention and control groups in adherence at 12 weeks (odds ratio [OR] 1·13; 95% CI 0·84–1·52; p=0·42). Furthermore, the proportion of participants adhering to guidelines on physical activity (351 [61%] of 574 intervention group participants vs 407 [63%] of 650 control group participants; OR 1·03, 95% CI 0·73–1·45; p=0·88), smoking (434 [76%] participants vs 501 [77%] participants; 1·12, 0·67–1·87; p=0·66), alcohol consumption (518 [90%] participants vs 596 [92%] participants; 0·73, 0·37–1·44; p=0·36), and fruit and vegetable intake (194 [34%] participants vs 196 [30%] participants; 1·08, 0·79–1·49; p=0·64) did not differ between groups. We found no significant differences between the intervention and control groups in any secondary outcome. 147 (26%) intervention group participants engaged with the OL@-OR@ programme (ie, set at least one behaviour change goal online). Interpretation: The OL@-OR@ mobile health programme did not improve adherence to health-related behaviour guidelines amongst Māori and Pasifika individuals. Funding: Healthier Lives He Oranga Hauora National Science Challenge

    A finite strain fibre-reinforced viscoelasto-viscoplastic model of plant cell wall growth

    Get PDF
    A finite strain fibre-reinforced viscoelasto-viscoplastic model implemented in a finite element (FE) analysis is presented to study the expansive growth of plant cell walls. Three components of the deformation of growing cell wall, i.e. elasticity, viscoelasticity and viscoplasticity-like growth, are modelled within a consistent framework aiming to present an integrative growth model. The two aspects of growth—turgor-driven creep and new material deposition—and the interplay between them are considered by presenting a yield function, flow rule and hardening law. A fibre-reinforcement formulation is used to account for the role of cellulose microfibrils in the anisotropic growth. Mechanisms in in vivo growth are taken into account to represent the corresponding biologycontrolled behaviour of a cell wall. A viscoelastic formulation is proposed to capture the viscoelastic response in the cell wall. The proposed constitutive model provides a unique framework for modelling both the in vivo growth of cell wall dominated by viscoplasticity-like behaviour and in vitro deformation dominated by elastic or viscoelastic responses. A numerical scheme is devised, and FE case studies are reported and compared with experimental data

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    Get PDF
    Background—Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods—Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results—Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p \u3c 0.0001) hemispheres. Notably, the left and right hemisphere showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion—This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants

    Children Who Acquire HIV Infection Perinatally Are at Higher Risk of Early Death than Those Acquiring Infection through Breastmilk: A Meta-Analysis

    Get PDF
    BACKGROUND: Assumptions about survival of HIV-infected children in Africa without antiretroviral therapy need to be updated to inform ongoing UNAIDS modelling of paediatric HIV epidemics among children. Improved estimates of infant survival by timing of HIV-infection (perinatally or postnatally) are thus needed. METHODOLOGY/PRINCIPAL FINDINGS: A pooled analysis was conducted of individual data of all available intervention cohorts and randomized trials on prevention of HIV mother-to-child transmission in Africa. Studies were right-censored at the time of infant antiretroviral initiation. Overall mortality rate per 1000 child-years of follow-up was calculated by selected maternal and infant characteristics. The Kaplan-Meier method was used to estimate survival curves by child's HIV infection status and timing of HIV infection. Individual data from 12 studies were pooled, with 12,112 children of HIV-infected women. Mortality rates per 1,000 child-years follow-up were 39.3 and 381.6 for HIV-uninfected and infected children respectively. One year after acquisition of HIV infection, an estimated 26% postnatally and 52% perinatally infected children would have died; and 4% uninfected children by age 1 year. Mortality was independently associated with maternal death (adjusted hazard ratio 2.2, 95%CI 1.6-3.0), maternal CD4<350 cells/ml (1.4, 1.1-1.7), postnatal (3.1, 2.1-4.1) or peri-partum HIV-infection (12.4, 10.1-15.3). CONCLUSIONS/RESULTS: These results update previous work and inform future UNAIDS modelling by providing survival estimates for HIV-infected untreated African children by timing of infection. We highlight the urgent need for the prevention of peri-partum and postnatal transmission and timely assessment of HIV infection in infants to initiate antiretroviral care and support for HIV-infected children

    Functional Analysis and Molecular Dynamics Simulation of LOX-1 K167N Polymorphism Reveal Alteration of Receptor Activity

    Get PDF
    The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines

    Predicting Novel Binding Modes of Agonists to β Adrenergic Receptors Using All-Atom Molecular Dynamics Simulations

    Get PDF
    Understanding the binding mode of agonists to adrenergic receptors is crucial to enabling improved rational design of new therapeutic agents. However, so far the high conformational flexibility of G protein-coupled receptors has been an obstacle to obtaining structural information on agonist binding at atomic resolution. In this study, we report microsecond classical molecular dynamics simulations of β1 and β2 adrenergic receptors bound to the full agonist isoprenaline and in their unliganded form. These simulations show a novel agonist binding mode that differs from the one found for antagonists in the crystal structures and from the docking poses reported by in silico docking studies performed on rigid receptors. Internal water molecules contribute to the stabilization of novel interactions between ligand and receptor, both at the interface of helices V and VI with the catechol group of isoprenaline as well as at the interface of helices III and VII with the ethanolamine moiety of the ligand. Despite the fact that the characteristic N-C-C-OH motif is identical in the co-crystallized ligands and in the full agonist isoprenaline, the interaction network between this group and the anchor site formed by Asp(3.32) and Asn(7.39) is substantially different between agonists and inverse agonists/antagonists due to two water molecules that enter the cavity and contribute to the stabilization of a novel network of interactions. These new binding poses, together with observed conformational changes in the extracellular loops, suggest possible determinants of receptor specificity

    Pig-to-Nonhuman Primates Pancreatic Islet Xenotransplantation: An Overview

    Get PDF
    The therapy of type 1 diabetes is an open challenging problem. The restoration of normoglycemia and insulin independence in immunosuppressed type 1 diabetic recipients of islet allotransplantation has shown the potential of a cell-based diabetes therapy. Even if successful, this approach poses a problem of scarce tissue supply. Xenotransplantation can be the answer to this limited donor availability and, among possible candidate tissues for xenotransplantation, porcine islets are the closest to a future clinical application. Xenotransplantation, with pigs as donors, offers the possibility of using healthy, living, and genetically modified islets from pathogen-free animals available in unlimited number of islets. Several studies in the pig-to-nonhuman primate model demonstrated the feasibility of successful preclinical islet xenotransplantation and have provided insights into the critical events and possible mechanisms of immune recognition and rejection of xenogeneic islet grafts. Particularly promising results in the achievement of prolonged insulin independence were obtained with newly developed, genetically modified pigs islets able to produce immunoregulatory products, using different implantation sites, and new immunotherapeutic strategies. Nonetheless, further efforts are needed to generate additional safety and efficacy data in nonhuman primate models to safely translate these findings into the clinic
    corecore