9 research outputs found

    Evoked potentials in the Atlantic cod following putatively innocuous and putatively noxious electrical stimulation: a minimally invasive approach

    Get PDF
    Aspects of peripheral and central nociception have previously been studied through recording of somatosensory evoked potentials (SEPs) to putative noxious stimuli in specific brain regions in a few freshwater fish species. In the present study, we describe a novel, minimally invasive method for recording SEPs from the central nervous system of the Atlantic cod (Gadus morhua). Cutaneous electric stimulation of the tail in 15 fish elicited SEPs at all stimulus intensities (2, 5, 10 and 20 mA) with quantitative properties corresponding to stimulus intensity. In contrast to previous fish studies, the methodological approach used in Atlantic cod in the current study uncovered a number of additional responses that could originate from multiple brain regions. Several of these responses were specific to stimulation at the highest stimulus intensities, possibly representing qualitative differences in central processing between somatosensory and nociceptive stimuli

    Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing

    Get PDF
    The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study's observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies

    Melanogenesis in visceral tissues of Salmo salar. A link between immunity and pigment production?

    No full text
    Melanogenesis is mostly studied in melanocytes and melanoma cells, but much less is known about other pigment cell systems. Liver, spleen, kidney, and other organs of lower vertebrates harbour a visceral pigment cell system with an embryonic origin that differs from that of melanocytes. In teleosts, melanin-containing cells occur in the reticulo-endothelial system and are mainly in the kidney and spleen. The Atlantic salmon (Salmo salar L.) is an ichthyic breeding species of considerable economic importance. The accumulation of pigments in salmon visceral organs and musculature adversely affects the quality of fish products and is a problem for the aquaculture industry. With the aim to reveal novel functions and behaviour of the salmonid extracutaneous pigment system, we investigated aspects of the melanogenic systems in the tissues of Atlantic salmon, as well as in SHK-1 cells, which is a long-term cell line derived from macrophages of the Atlantic salmon head-kidney. We demonstrate that a melanogenic system is present in SHK-1 cells, head-kidney, and spleen tissues. As teleosts lack lymph nodes and Peyer’s patches, the head-kidney and spleen are regarded as the most important secondary lymphoid organs. The detection of tyrosinase activity in lymphoid organs indicates that a link exists between the extracutaneous pigmentary system and the immune system in salmo

    MELANOGENESIS IN VISCERAL TISSUES OF SALMO SALAR. A LINK BETWEEN IMMUNITY AND PIGMENT PRODUCTION?

    No full text
    Melanogenesis is mostly studied in melanocytes and melanoma cells, but much less is known about other pigment cell systems. Liver, spleen, kidney, and other organs of lower vertebrates harbour a visceral pigment cell system with an embryonic origin that differs from that of melanocytes distinct embryonic origin. In teleosts, melanin-containing cells occur in the reticulo-endothelial system and are mainly in the kidney and spleen. The Atlantic salmon (Salmo salar L.) is an ichthyic breeding species of considerable economic importance. The accumulation of pigments in salmon visceral organs and musculature adversely affects the quality of fish products and is a problem for the aquaculture industry. With the aim to reveal novel functions and behaviour of the salmonid extracutaneous pigment system, we investigated aspects of the melanogenic systems in the tissues of Atlantic salmon, as well as in SHK-1 cells, which is a long-term cell line derived from macrophages of the Atlantic salmon head-kidney. We demonstrate that a melanogenic system is present in SHK-1 cells, head-kidney, and spleen tissues. As teleosts lack lymph nodes and Peyer’s patches, the head-kidney and spleen are regarded as the most important secondary lymphoid organs. The detection of tyrosinase activity in lymphoid organs indicates that a link exists between the extracutaneous pigmentary system and the immune system in salmon

    Endocrine Disruption and Organochlorine Pesticides

    Full text link
    Le plus ancien rĂ©cit de lutte contre la pollution remonte Ă  une lĂ©gende indienne racontant que la divinitĂ© Sing-bonga Ă©tait incommodĂ©e par les Ă©manations des fours dans lesquels les Asuras fondaient leurs mĂ©taux (1). Evidemment depuis, la problĂ©matique n–a cessĂ© de s–accroĂźtre et la contamination de la Terre par de nombreux polluants est devenue aujourd–hui un problĂšme majeur de notre SociĂ©tĂ©. La protection de notre environnement est une question capitale qui doit ĂȘtre respectĂ©e malgrĂ© la pression Ă©conomique actuelle et qui ne cessera de croĂźtre au cours des prochaines annĂ©es mĂȘme si l–identification objective et indiscutable de ce qui est essentiel – donc devant ĂȘtre prioritairement garanti sur la planĂšte – est difficile Ă  cerner (2). « Un oiseau en mauvais Ă©tat ne pond pas de bons oeufs » disait un proverbe grec. Mais ce n–est qu–à partir de la seconde moitiĂ© du XXĂšme siĂšcle que les toxicologues ont commencĂ© Ă  identifier les effets qu–avaient entraĂźnĂ©s Ă  l–échelle mondiale les pollutions Ă©mises aux XIXĂšme siĂšcle sur la faune sauvage et sur le cheptel (3). L–histoire contemporaine des pesticides industriels commence vers 1874 (synthĂšse des organochlorĂ©s) et se poursuit tout au long de ces 2 siĂšcles en passant par la synthĂšse des organophosphorĂ©s (1950), des carbamates (1970) et des pyrĂ©throĂŻdes (1975) (4). Le dichlorodiphĂ©nyltrichloroĂ©thane (DDT) a Ă©tĂ© synthĂ©tisĂ© pour la premiĂšre fois par un Ă©tudiant en cours de prĂ©paration de sa thĂšse de doctorat : Othmer Zeidler. La production, reprise par les entreprises F.Mayo puis par la Geigy Co. a d–abord intĂ©ressĂ© l–armĂ©e, puis l–agriculture. DĂšs la fin de la 2Ăšme guerre mondiale, des mises en garde furent lancĂ©es Ă  propos des effets nocifs du produit (4). Un dĂ©clin des populations de grives, d–aigles chauves, d–orfaies et de mammifĂšres consommateurs de poissons fut constatĂ© Ă  partir des annĂ©es 50 et dĂ©noncĂ© par Rachel Carson dans son cĂ©lĂšbre appel du « Silent Spring » de 1962. Bien qu–il soit interdit en Occident depuis les annĂ©es 70, ce produit a Ă©tĂ© tellement utilisĂ© et prĂ©sente une rĂ©manence si longue qu–une contamination ubiquitaire existe aujourd–hui encore. De plus, ce produit continue Ă  ĂȘtre produit aux USA pour ĂȘtre utilisĂ© Ă  des fins de dĂ©moustification dans les pays en voie de dĂ©veloppement. Il en va de mĂȘme de l–HexachlorobenzĂšne (HCB), un autre organochlorĂ© dont l–usage est interdit sous nos latitudes, mais reste frĂ©quent dans d–autres pays. Ces deux exemples indiquent que le problĂšme de la contamination continue Ă  nous concerner, mĂȘme pour des produits dont l–usage est aujourd–hui strictement rĂ©glementĂ© ou interdit. Des effets sur la faune semblent encore actuellement devoir ĂȘtre attribuĂ©s Ă  ces produits. La diminution de la population des phoques dans la mer de Wadden pourrait ĂȘtre due Ă  la forte contamination en composants organochlorĂ©s des poissons dont ces phoques se nourrissent (5). ExposĂ© au DDT et Ă  son mĂ©tabolite dichlorodiphenyldichloroĂ©thylĂšne (DDE), le Seratherodon mossambicus prĂ©sente une rĂ©duction de la sĂ©crĂ©tion de cortisol par une action toxique cytospĂ©cifique sur l–axe hypothalamo-hypophysaire (6). Des travaux rĂ©cents ont montrĂ© que le DDT et le DDE se lient chez les oiseaux et les mammifĂšres au moyen de liaisons covalentes aux cellules de la zona fasciculata - homologue du tissu interrĂ©nal du poisson - induisant des microhĂ©morragies. Cette « dĂ©faillance » cortisolique peut s–accompagner d–une perturbation du mĂ©tabolisme glucidique et notamment d–un taux Ă©levĂ© de glycogĂšne hĂ©patique (7). Les pesticides organochlorĂ©s (DDT, DDE) entraĂźnent Ă©galement des perturbations d–ordre mĂ©tabolique chez certaines espĂšces d–oiseaux, notamment le faucon pĂšlerin en Grande Bretagne et les oiseaux piscivores des grands lacs nord amĂ©ricains oĂč l–on a constatĂ© au cours des annĂ©es 1960 que leur reproduction Ă©tait menacĂ©e et qu–une des manifestations les plus Ă©videntes des perturbations observĂ©es Ă©tait le taux Ă©levĂ© de malformations (8). Des mortalitĂ©s Ă©levĂ©es de poissons ou de coquillages ont Ă©tĂ© rapportĂ©es dans des Ă©levages situĂ©s Ă  proximitĂ© des zones d–épandage de pesticides organophosphorĂ©s et de carbamates. En 1991, la dispersion aĂ©rienne de fenitrothion dans le but de provoquer la dĂ©moustication en Languedoc a Ă©tĂ© Ă  l–origine de la perte de plusieurs tonnes de crevettes japonaises. L–utilisation de trichlorfon et de dichlorvos comme antiparasitaires dans des fermes d–élevages de saumons a provoquĂ© des Ă©pisodes de mortalitĂ© importante (9).Xenoestrogens such organochlorine pesticides are known to induce changes in reproductive development, function or behaviour in wildlife. Because these compounds are able to modify the estrogens metabolism, or to compete with estradiol for binding to the estrogen receptor, it may be possible that these products affect the risk of developing impaired fertility, precocious puberty or some kinds of cancer in man
    corecore