1,260 research outputs found

    Amplified mid-latitude planetary waves favour particular regional weather extremes

    Get PDF
    Copyright © 2014 Nature Publishing GroupThere has been an ostensibly large number of extreme weather events in the Northern Hemisphere mid-latitudes during the past decade [1]. An open question that is critically important for scientists and policy makers is whether any such increase in weather extremes is natural or anthropogenic in origin [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. One mechanism proposed to explain the increased frequency of extreme weather events is the amplification of mid-latitude atmospheric planetary waves [14, 15, 16, 17]. Disproportionately large warming in the northern polar regions compared with mid-latitudes—and associated weakening of the north–south temperature gradient—may favour larger amplitude planetary waves [14, 15, 16, 17], although observational evidence for this remains inconclusive [18, 19, 20, 21]. A better understanding of the role of planetary waves in causing mid-latitude weather extremes is essential for assessing the potential environmental and socio-economic impacts of future planetary wave changes. Here we show that months of extreme weather over mid-latitudes are commonly accompanied by significantly amplified quasi-stationary mid-tropospheric planetary waves. Conversely, months of near-average weather over mid-latitudes are often accompanied by significantly attenuated waves. Depending on geographical region, certain types of extreme weather (for example, hot, cold, wet, dry) are more strongly related to wave amplitude changes than others. The findings suggest that amplification of quasi-stationary waves preferentially increases the probabilities of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.Natural Environment Research Council (NERC

    A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900

    Get PDF
    A new dataset of integrated and homogenized monthly surface air temperature over global land for the period since 1900 [China Meteorological Administration global Land Surface Air Temperature (CMA-LSAT)] is developed. In total, 14 sources have been collected and integrated into the newly developed dataset, including three global (CRUTEM4, GHCN, and BEST), three regional and eight national sources. Duplicate stations are identified, and those with the higher priority are chosen or spliced. Then, a consistency test and a climate outlier test are conducted to ensure that each station series is quality controlled. Next, two steps are adopted to assure the homogeneity of the station series: (1) homogenized station series in existing national datasets (by National Meteorological Services) are directly integrated into the dataset without any changes (50% of all stations), and (2) the inhomogeneities are detected and adjusted for in the remaining data series using a penalized maximal t test (50% of all stations). Based on the dataset, we re-assess the temperature changes in global and regional areas compared with GHCN-V3 and CRUTEM4, as well as the temperature changes during the three periods of 1900–2014, 1979–2014 and 1998–2014. The best estimates of warming trends and there 95% confidence ranges for 1900–2014 are approximately 0.102 ± 0.006 °C/decade for the whole year, and 0.104 ± 0.009, 0.112 ± 0.007, 0.090 ± 0.006, and 0.092 ± 0.007 °C/decade for the DJF (December, January, February), MAM, JJA, and SON seasons, respectively. MAM saw the most significant warming trend in both 1900–2014 and 1979–2014. For an even shorter and more recent period (1998–2014), MAM, JJA and SON show similar warming trends, while DJF shows opposite trends. The results show that the ability of CMA-LAST for describing the global temperature changes is similar with other existing products, while there are some differences when describing regional temperature changes

    Chances and Limitations of Wild Bird Monitoring for the Avian Influenza Virus H5N1 — Detection of Pathogens Highly Mobile in Time and Space

    Get PDF
    Highly pathogenic influenza virus (HPAIV) H5N1 proved to be remarkably mobile in migratory bird populations where it has led to extensive outbreaks for which the true number of affected birds usually cannot be determined. For the evaluation of avian influenza monitoring and HPAIV early warning systems, we propose a time-series analysis that includes the estimation of confidence intervals for (i) the prevalence in outbreak situations or (ii) in the apparent absence of disease in time intervals for specified regional units. For the German outbreak regions in 2006 and 2007, the upper 95% confidence limit allowed the detection of prevalences below 1% only for certain time intervals. Although more than 25,000 birds were sampled in Germany per year, the upper 95% confidence limit did not fall below 5% in the outbreak regions for most of the time. The proposed analysis can be used to monitor water bodies and high risk areas, also as part of an early-warning system. Chances for an improved targeting of the monitoring system as part of a risk-based approach are discussed with the perspective of reducing sample sizes

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    A Genetic Screen for Dihydropyridine (DHP)-Resistant Worms Reveals New Residues Required for DHP-Blockage of Mammalian Calcium Channels

    Get PDF
    Dihydropyridines (DHPs) are L-type calcium channel (Cav1) blockers prescribed to treat several diseases including hypertension. Cav1 channels normally exist in three states: a resting closed state, an open state that is triggered by membrane depolarization, followed by a non-conducting inactivated state that is triggered by the influx of calcium ions, and a rapid change in voltage. DHP binding is thought to alter the conformation of the channel, possibly by engaging a mechanism similar to voltage dependent inactivation, and locking a calcium ion in the pore, thereby blocking channel conductance. As a Cav1 channel crystal structure is lacking, the current model of DHP action has largely been achieved by investigating the role of candidate Cav1 residues in mediating DHP-sensitivity. To better understand DHP-block and identify additional Cav1 residues important for DHP-sensitivity, we screened 440,000 randomly mutated Caenorhabditis elegans genomes for worms resistant to DHP-induced growth defects. We identified 30 missense mutations in the worm Cav1 pore-forming (α1) subunit, including eleven in conserved residues known to be necessary for DHP-binding. The remaining polymorphisms are in eight conserved residues not previously associated with DHP-sensitivity. Intriguingly, all of the worm mutants that we analyzed phenotypically exhibited increased channel activity. We also created orthologous mutations in the rat α1C subunit and examined the DHP-block of current through the mutant channels in culture. Six of the seven mutant channels examined either decreased the DHP-sensitivity of the channel and/or exhibited significant residual current at DHP concentrations sufficient to block wild-type channels. Our results further support the idea that DHP-block is intimately associated with voltage dependent inactivation and underscores the utility of C. elegans as a screening tool to identify residues important for DHP interaction with mammalian Cav1 channels

    VX Hydrolysis by Human Serum Paraoxonase 1: A Comparison of Experimental and Computational Results

    Get PDF
    Human Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for this purpose. The binding interaction between HuPON1 and VX has recently been modeled, but the mechanism for VX hydrolysis is still unknown. In this study, we created a transition state model for VX hydrolysis (VXts) in water using quantum mechanical/molecular mechanical simulations, and docked the transition state model to 22 experimentally characterized HuPON1 variants using AutoDock Vina. The HuPON1-VXts complexes were grouped by reaction mechanism using a novel clustering procedure. The average Vina interaction energies for different clusters were compared to the experimentally determined activities of HuPON1 variants to determine which computational procedures best predict how well HuPON1 variants will hydrolyze VX. The analysis showed that only conformations which have the attacking hydroxyl group of VXts coordinated by the sidechain oxygen of D269 have a significant correlation with experimental results. The results from this study can be used for further characterization of how HuPON1 hydrolyzes VX and design of HuPON1 variants with increased activity against VX.United States. Defense Threat Reduction Agenc
    • …
    corecore