312 research outputs found

    Liposome-based dry powder vaccine immunization targeting the lungs induces broad protection against pneumococcus

    Get PDF
    Streptococcus pneumoniae is an important human pathogen. Currently used conjugate vaccines are effective against invasive disease, but protection is restricted to serotypes included in the formulation, leading to serotype replacement. Furthermore, protection against non-invasive disease is reported to be considerably lower. The development of a serotype-independent vaccine is thus important and Pneumococcal surface protein A (PspA) is a promising vaccine candidate. PspA shows some diversity and can be classified in 6 clades and 3 families, with families 1 and 2 being the most frequent in clinical isolates. The ideal vaccine should thus induce protection against the two most common families of PspA. The aim of this work was to develop a liposome-based vaccine containing PspAs from family 1 and 2 and to characterize its immune response. Liposomes (LP) composed of dipalmitoylphosphatidylcholine (DPPC) and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) with or without α-galactosylceramide (α-GalCer) were produced by microfluidics, encapsulating PspA from clade 1 (PspA1, family 1) and/or clade 4 (PspA4Pro, family 2) followed by spray-drying with trehalose to form nanocomposite microparticles carriers (NCMP). LP/NCMPs showed good stability and preservation of protein activity. LP/NCMPs containing PspA1 and/or PspA4Pro were used for immunization of mice targeting the lungs. High serum IgG antibody titers against both PspA1 and PspA4Pro were detected in animals immunized with LP/NCMPs containing α-GalCer, with a balance of IgG1 and IgG2a titers. IgG in sera from immunized mice bound to pneumococcal strains from different serotypes and expressing different PspA clades, indicating broad recognition. Mucosal IgG and IgA were also detected. Importantly, immunization with LP/NCMPs induced full protection against strains expressing PspAs from family 1 and 2. Furthermore, CD4+ resident memory T cells were detected in the lungs of the immunized animals that survived the challenge

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts

    The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational models play an increasingly important role in the assessment and control of public health crises, as demonstrated during the 2009 H1N1 influenza pandemic. Much research has been done in recent years in the development of sophisticated data-driven models for realistic computer-based simulations of infectious disease spreading. However, only a few computational tools are presently available for assessing scenarios, predicting epidemic evolutions, and managing health emergencies that can benefit a broad audience of users including policy makers and health institutions.</p> <p>Results</p> <p>We present "GLEaMviz", a publicly available software system that simulates the spread of emerging human-to-human infectious diseases across the world. The GLEaMviz tool comprises three components: the client application, the proxy middleware, and the simulation engine. The latter two components constitute the GLEaMviz server. The simulation engine leverages on the Global Epidemic and Mobility (GLEaM) framework, a stochastic computational scheme that integrates worldwide high-resolution demographic and mobility data to simulate disease spread on the global scale. The GLEaMviz design aims at maximizing flexibility in defining the disease compartmental model and configuring the simulation scenario; it allows the user to set a variety of parameters including: compartment-specific features, transition values, and environmental effects. The output is a dynamic map and a corresponding set of charts that quantitatively describe the geo-temporal evolution of the disease. The software is designed as a client-server system. The multi-platform client, which can be installed on the user's local machine, is used to set up simulations that will be executed on the server, thus avoiding specific requirements for large computational capabilities on the user side.</p> <p>Conclusions</p> <p>The user-friendly graphical interface of the GLEaMviz tool, along with its high level of detail and the realism of its embedded modeling approach, opens up the platform to simulate realistic epidemic scenarios. These features make the GLEaMviz computational tool a convenient teaching/training tool as well as a first step toward the development of a computational tool aimed at facilitating the use and exploitation of computational models for the policy making and scenario analysis of infectious disease outbreaks.</p

    Spider Movement, UV Reflectance and Size, but Not Spider Crypsis, Affect the Response of Honeybees to Australian Crab Spiders

    Get PDF
    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees
    corecore