51 research outputs found

    Simian Immunodeficiency Virus SIVrcm, a Unique CCR2-Tropic Virus, Selectively Depletes Memory CD4+ T Cells in Pigtailed Macaques through Expanded Coreceptor Usage In Vivo â–¿

    No full text
    Simian immunodeficiency virus SIVrcm, which naturally infects red-capped mangabeys (RCMs), is the only SIV that uses CCR2 as its main coreceptor due to the high frequency of a CCR5 deletion in RCMs. We investigated the dynamics of SIVrcm infection to identify specific pathogenic mechanisms associated with this major difference in SIV biology. Four pigtailed macaques (PTMs) were infected with SIVrcm, and infection was monitored for over 2 years. The dynamics of in vivo SIVrcm replication in PTMs was similar to that of other pathogenic and nonpathogenic lymphotropic SIVs. Plasma viral loads (VLs) peaked at 107 to 109 SIVrcm RNA copies/ml by day 10 postinoculation (p.i.). A viral set point was established by day 42 p.i. at 103 to 105 SIVrcm RNA copies/ml and lasted up to day 180 p.i., when plasma VLs decreased below the threshold of detection, with blips of viral replication during the follow-up. Intestinal SIVrcm replication paralleled that of plasma VLs. Up to 80% of the CD4+ T cells were depleted by day 28 p.i. in the gut. The most significant depletion (>90%) involved memory CD4+ T cells. Partial CD4+ T-cell restoration was observed in the intestine at later time points. Effector memory CD4+ T cells were the least restored. SIVrcm strains isolated from acutely infected PTMs used CCR2 coreceptor, as reported, but expansion of coreceptor usage to CCR4 was also observed. Selective depletion of effector memory CD4+ T cells is in contrast with predicted in vitro tropism of SIVrcm for macrophages and is probably due to expansion of coreceptor usage. Taken together, these findings emphasize the importance of understanding the selective forces driving viral adaptation to a new host

    Combined intermittent and sustained hypoxia is a novel and deleterious cardio-metabolic phenotype

    No full text
    Study objectivesChronic obstructive pulmonary disease and obstructive sleep apnea overlap syndrome is associated with excess mortality, and outcomes are related to the degree of hypoxemia. People at high altitudes are susceptible to periodic breathing, and hypoxia at altitude is associated with cardio-metabolic dysfunction. Hypoxemia in these scenarios may be described as superimposed sustained hypoxia (SH) plus intermittent hypoxia (IH), or overlap hypoxia (OH), the effects of which have not been investigated. We aimed to characterize the cardio-metabolic consequences of OH in mice.MethodsC57BL/6J mice were subjected to either SH (FiO2 = 0.10), IH (FiO2 = 0.21 for 12 h, and FiO2 oscillating between 0.21 and 0.06, 60 times/hour, for 12 h), OH (FiO2 = 0.13 for 12 h, and FiO2 oscillating between 0.13 and 0.06, 60 times/hour, for 12 h), or room air (RA), n = 8/group. Blood pressure and intraperitoneal glucose tolerance test were measured serially, and right ventricular systolic pressure (RVSP) was assessed.ResultsSystolic blood pressure transiently increased in IH and OH relative to SH and RA. RVSP did not increase in IH, but increased in SH and OH by 52% (p < .001) and 20% (p = .001). Glucose disposal worsened in IH and improved in SH, with no change in OH. Serum low- and very-low-density lipoproteins increased in OH and SH, but not in IH. Hepatic oxidative stress increased in all hypoxic groups, with the highest increase in OH.ConclusionsOH may represent a unique and deleterious cardio-metabolic stimulus, causing systemic and pulmonary hypertension, and without protective metabolic effects characteristic of SH
    • …
    corecore