33 research outputs found

    Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR

    Get PDF
    This is the author accepted manuscript. The final version is availablefrom Elsevier via the DOI in this recordSex steroid hormones including estrogens and androgens play fundamental roles in regulating reproductive activities and they act through estrogen and androgen receptors (ESR and AR). These steroid receptors have evolved from a common ancestor in association with several gene duplications. In most vertebrates, this has resulted in two ESR subtypes (ESR1 and ESR2) and one AR, whereas in teleost fish there are at least three ESRs (ESR1, ESR2a and ESR2b) and two ARs (ARα and ARβ) due to a lineage-specific whole genome duplication. Functional distinctions have been suggested among these receptors, but to date their roles have only been characterized in a limited number of species. Sexual differentiation and the development of reproductive organs are indispensable for all animal species and in vertebrates these events depend on the action of sex steroid hormones. Here we review the recent progress in understanding of the functions of the ESRs and ARs in the development and expression of sexually dimorphic characteristics associated with steroid hormone signaling in vertebrates, with representative fish, amphibians, reptiles, birds and mammals.Japan Society for the Promotion of ScienceMinistry of the Environment, JapanDepartment for Environment, Food and Rural Affairs (Defra), UKNational Institute for Basic BiologyKyushu Universit

    Visual motion with pink noise induces predation behaviour

    Get PDF
    Visual motion cues are one of the most important factors for eliciting animal behaviour, including predator-prey interactions in aquatic environments. To understand the elements of motion that cause such selective predation behaviour, we used a virtual plankton system where the predation behaviour in response to computer-generated prey was analysed. First, we performed motion analysis of zooplankton (Daphnia magna) to extract mathematical functions for biologically relevant motions of prey. Next, virtual prey models were programmed on a computer and presented to medaka (Oryzias latipes), which served as predatory fish. Medaka exhibited predation behaviour against several characteristic virtual plankton movements, particularly against a swimming pattern that could be characterised as pink noise motion. Analysing prey-predator interactions via pink noise motion will be an interesting research field in the future

    Endocrine regulation of predator-induced phenotypic plasticity

    Get PDF
    Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator)

    Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The <it>Daphnia pulex </it>genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes <it>D. pulex </it>an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved.</p> <p>Results</p> <p>We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of <it>D. pulex</it>. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, <it>RECQ2 </it>(which suppresses homologous recombination) is present in multiple copies while <it>DMC1 </it>is the only gene in our inventory that is absent in the <it>Daphnia </it>genome. Expression patterns for 44 gene copies were similar during meiosis <it>versus </it>parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues.</p> <p>Conclusion</p> <p>We propose that expansions in meiotic gene families in <it>D. pulex </it>may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.</p

    Diapause as escape strategy to exposure to toxicants: response of Brachionus calyciforus to arsenic

    Get PDF
    Invertebrate organisms commonly respond to environmental fluctuation by entering diapause. Production of diapause in monogonont rotifers involves a previous switch from asexual to partial sexual reproduction. Although zooplankton have been used in ecotoxicological assays, often their true vulnerability to toxicants is underestimated by not incorporating the sexual phase. We experimentally analyzed traits involved in sexual reproduction and diapause in the cyclically parthenogenetic freshwater rotifer, Brachionus calyciflorus, exposed to arsenic, a metalloid naturally found in high concentrations in desert zones, focusing on the effectiveness of diapause as an escape response in the face of an adverse condition. Addition of sublethal concentrations of arsenic modified the pattern of diapause observed in the rotifer: investment in diapause with arsenic addition peaked earlier and higher than in non-toxicant conditions, which suggests that sexual investment could be enhanced in highly stressed environmental conditions by increased responsiveness to stimulation. Nevertheless, eggs produced in large amount with arsenic, were mostly low quality, and healthy-looking eggs had lower hatching success, therefore it is unclear whether this pattern is optimum in an environment with arsenic, or if rather arsenic presence in water bodies disturbs the optimal allocation of offspring entering diapause. We observed high accumulation of arsenic in organisms exposed to constant concentration after several generations, which suggests that arsenic may be accumulated transgenerationally. The sexual phase in rotifers may be more sensitive to environmental conditions than the asexual one, therefore diapause attributes should be considered in ecotoxicological assessment because of its ecological and evolutionary implications on lakes biodiversity

    Acute to chronic estimation of <i>Daphnia magna</i> toxicity within the QSAAR framework<sup>*</sup>

    No full text
    <p>We constructed models for acute to chronic estimation of the <i>Daphnia magna</i> reproductive toxicities of chemical substances from their <i>Daphnia magna</i> acute immobilization toxicities. The models combined the acute toxicities with structural and physicochemical descriptors. We used multiregression analysis and selected the descriptors for the models by means of a genetic algorithm. Of the best 100 models (as indicated by the lack of fit score), 90% included the following descriptors: acute toxicity (i.e. an activity parameter), distribution coefficient (log <i>D</i>) and structural indicator variables that indicate the presence of –NH<sub>2</sub> attached to aromatic carbon and the presence of a chlorine atom. We compared the predictive abilities of five of these quantitative structure–activity–activity relationship (QSAAR) acute to chronic estimation models with the predictive ability of a simple linear regression model. The comparison revealed that inclusion of structural and physicochemical descriptors such as those in QSAAR models can improve models for extrapolation from acute to chronic toxicity. Our results also provide a QSAAR framework that is expected to be useful for the further development of chronic toxicity estimation models.</p

    Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties

    No full text
    <p>We propose a three-step strategy that uses structural and physicochemical properties of chemicals to predict their 72 h algal growth inhibition toxicities against <i>Pseudokirchneriella subcapitata</i>. In Step 1, using a log <i>D</i>-based criterion and structural alerts, we produced an interspecies QSAR between algal and acute daphnid toxicities for initial screening of chemicals. In Step 2, we categorized chemicals according to the Verhaar scheme for aquatic toxicity, and we developed QSARs for toxicities of Class 1 (non-polar narcotic) and Class 2 (polar narcotic) chemicals by means of simple regression with a hydrophobicity descriptor and multiple regression with a hydrophobicity descriptor and a quantum chemical descriptor. Using the algal toxicities of the Class 1 chemicals, we proposed a baseline QSAR for calculating their excess toxicities. In Step 3, we used structural profiles to predict toxicity either quantitatively or qualitatively and to assign chemicals to the following categories: <i>Pesticide</i>, <i>Reactive</i>, <i>Toxic</i>, <i>Toxic low</i> and <i>Uncategorized</i>. Although this three-step strategy cannot be used to estimate the algal toxicities of all chemicals, it is useful for chemicals within its domain. The strategy is also applicable as a component of Integrated Approaches to Testing and Assessment.</p

    External validation of acute-to-chronic models for estimation of reproductive toxicity to <i>Daphnia magna</i>

    No full text
    <p>We evaluated the predictivity and applicability of previously proposed models for the reproductive toxicity of chemicals to Daphnia magna [SAR QSAR Environ. Res. 27:10, 833–850] by using external data from the United States Environmental Protection Agency database ECOTOX. These models were based on quantitative structure–activity–activity relationships (QSAARs) and a quantitative activity–activity relationship (QAAR): the models can be categorized as acute-to-chronic models with (QSAAR) and without (QAAR) structural and physicochemical (e.g. distribution coefficients, log <i>D</i>) descriptors. We found that the QSAAR models were suitable for chemicals with an ‘–NH<sub>2</sub> attached to aromatic carbon’ sub-structure, whereas the QAAR model was better for multicomponent compounds, coordination complexes, tin compounds and straight-chain primary amines. For chemicals with a known specific mode of action (e.g. pesticides and antibacterial agents and their derivatives), toxicity estimation within the acute-to-chronic framework requires special attention. We evaluated the applicability of the models on the basis of the descriptors in the models. We recommend that chemicals be pre-screened before their toxicities are estimated with these models: pre-screening enabled the estimation of the toxicities of some chemicals within the applicability domains of the models.</p
    corecore