109 research outputs found

    Identification of proteins associated with ligand-activated estrogen receptor alpha in human breast cancer cell nuclei by tandem affinity purification and nanoLC-MS/MS.

    Get PDF
    Estrogen receptor a (ER-a) is a key mediator of estrogen actions in breast cancer (BC) cells. Understanding the effects of ligand-activated ER-a in target cells requires identification of the molecular partners acting in concert with this nuclear receptor to transduce the hormonal signal. We applied tandem affinity purification (TAP), glycerol gradient centrifugation and MS analysis to isolate and identify proteins interacting with ligand-activated ER-a in MCF-7 cell nuclei. This led to the identification of 264 ER-associated proteins, whose functions highlight the hinge role of ER-a in the coordination of multiple hormone-regulated nuclear processes in BC cells

    REDES SOCIAIS E GERATIVIDADE: A EXPERIĂŠNCIA DO PROGRAMA IDOSOS ON-LINE

    Get PDF
    O projeto Idoso On-line é um espaço de inclusão digital para idosos que possibilita o encontro intergeracional e ações gerativas. Buscou-se, neste estudo, identificar os indicadores de geratividade na velhice, bem como os possíveis impactos e repercussões dos idosos ao participarem dessa oficina. Aplicou-se um questionário sociodemográfico, um questionário semiestruturado sobre a utilização do computador e uma Escala de Geratividade. O tratamento e a análise dos dados foram realizados por meio da utilização do programa SPSS. Os resultados apontaram que a maioria dos participantes são mulheres com mais de 70 anos, e com ensino fundamental incompleto. Sobre as ações gerativas, dos vinte itens da Escala, seis apresentaram diferenças estatisticamente significativas entre as médias das duas coletas realizadas (antes e posterior à participação no Módulo III) 1. Tenho desenvolvido ações que têm tido impacto noutras pessoas; 2. Penso que serei lembrado durante bastante tempo depois de morrer; 3. Procuro partilhar e ensinar aos outros aquilo que sei fazer; 4. Os outros dizem que sou muito prestativo; 5. As pessoas me procuram para se aconselharem; 6. Sinto que não tenho feito nada que vá sobreviver à minha morte. A maior parte dos participantes (95%) possuíam computadores em casa com acesso à internet e estavam interessados em notícias, pesquisa e diversão. Esses participantes perceberam as redes sociais como ferramentas para comunicação, conhecimento e interação com o mundo. Identificou-se que as redes sociais podem contribuir para a presença, o fortalecimento, e a busca de ações ou atitudes que favorecem a geratividade

    Quantitative expression profiling of highly degraded RNA from formalin-fixed, paraffin-embedded breast tumor biopsies by oligonucleotide microarrays.

    Get PDF
    Microarray-based gene expression profiling is well suited for parallel quantitative analysis of large numbers of RNAs, but its application to cancer biopsies, particularly formalin-fixed, paraffin-embedded (FFPE) archived tissues, is limited by the poor quality of the RNA recovered. This represents a serious drawback, as FFPE tumor tissue banks are available with clinical and prognostic annotations, which could be exploited for molecular profiling studies, provided that reliable analytical technologies are found. We applied and evaluated here a microarray-based cDNA-mediated annealing, selection, extension and ligation (DASL) assay for analysis of 502 mRNAs in highly degraded total RNA extracted from cultured cells or FFPE breast cancer (MT) biopsies. The study included quantitative and qualitative comparison of data obtained by analysis of the same RNAs with genome-wide oligonucleotide microarrays vs DASL arrays and, by DASL, before and after extensive in vitro RNA fragmentation. The DASL-based expression profiling assay applied to RNA extracted from MCF-7 cells, before or after 24 h stimulation with a mitogenic dose of 17b-estradiol, consistently allowed to detect hormone-induced gene expression changes following extensive RNA degradation in vitro. Comparable results where obtained with tumor RNA extracted from FFPE MT biopsies (6 to 19 years old). The method proved itself sensitive, reproducible and accurate, when compared to results obtained by microarray analysis of RNA extracted from snap-frozen tissue of the same tumor

    Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells.

    Get PDF
    Estrogen Receptor alpha and beta (ER-a and -b) are members of the nuclear receptor family of transcriptional regulators with distinct roles in mediating estrogen dependent breast cancer cell growth and differentiation. Following activation by the hormone, these proteins undergo conformation changes and accumulate in the nucleus, where they bind to chromatin at regulatory sites as homo- and/or heterodimers and assemble in large multiprotein complexes. Although the two ERs share a conserved structure, they exert specific and distinct functional roles in normal and transformed mammary epithelial cells and other cell types. To investigate the molecular bases of such differences, we performed a comparative computational analysis of the nuclear interactomes of the two ER subtypes, exploiting two datasets of receptor interacting proteins identified in breast cancer cell nuclei by Tandem Affinity Purification for their ability to associate in vivo with ligand- activated ER-a and/or ER-b. These datasets comprise 498 proteins, of which only 70 are common to both ERs, suggesting that differences in the nature of the two ER interactomes are likely to sustain the distinct roles of the two receptor subtypes. Functional characterization of the two interactomes and their topological analysis, considering node degree and closeness of the networks, confirmed this possibility. Indeed, clustering and network dissection highlighted the presence of distinct and ER subtype-specific subnetworks endowed with defined functions. Altogether, these data provide new insights on the protein–protein interaction networks controlled by ER-a and -b that mediate their ability to transduce estrogen signaling in breast cancer cells

    Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer.

    Get PDF
    Estrogen effects on mammary epithelial and breast cancer (BC) cells are mediated by the nuclear receptors ERα and ERβ, transcription factors that display functional antagonism with each other, with ERβ acting as oncosuppressor and interfering with the effects of ERα on cell proliferation, tumor promotion and progression. Indeed, hormone-responsive, ERα+ BC cells often lack ERβ, which when present associates with a less aggressive clinical phenotype of the disease. Recent evidences point to a significant role of microRNAs (miRNAs) in BC, where specific miRNA expression profiles associate with distinct clinical and biological phenotypes of the lesion. Considering the possibility that ERβ might influence BC cell behavior via miRNAs, we compared miRNome expression in ERβ+ vs ERβ- hormone-responsive BC cells and found a widespread effect of this ER subtype on the expression pattern of these non-coding RNAs. More importantly, the expression pattern of 67 miRNAs, including 10 regulated by ERβ in BC cells, clearly distinguishes ERβ+, node-negative, from ERβ-, metastatic, mammary tumors. Molecular dissection of miRNA biogenesis revealed multiple mechanisms for direct regulation of this process by ERβ+ in BC cell nuclei. In particular, ERβ downregulates miR-30a by binding to two specific sites proximal to the gene and thereby inhibiting pri-miR synthesis. On the other hand, the receptor promotes miR-23b, -27b and 24-1 accumulation in the cell by binding in close proximity of the corresponding gene cluster and preventing in situ the inhibitory effects of ERα on pri-miR maturation by the p68/DDX5-Drosha microprocessor complex. These results indicate that cell autonomous regulation of miRNA expression is part of the mechanism of action of ERβ in BC cells and could contribute to establishment or maintenance of a less aggressive tumor phenotype mediated by this nuclear receptor

    Effects of Oestrogen on MicroRNA Expression in Hormone-Responsive Breast Cancer Cells

    Get PDF
    Oestrogen receptor alpha (ERα) is a ligand-dependent transcription factor that mediates oestrogen effects in hormone-responsive cells. Following oestrogenic activation, ERα directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) represent a class of small noncoding RNAs that function as negative regulators of protein-coding gene expression. They are found aberrantly expressed or mutated in cancer, suggesting their crucial role as either oncogenes or tumour suppressor genes. Here, we analysed changes in miRNA expression in response to oestrogen in hormone-responsive breast cancer MCF-7 and ZR-75.1 cells by microarray-mediated expression profiling. This led to the identification of 172 miRNAs up- or down-regulated by ERα in response to 17β-oestradiol, of which 52 are similarly regulated by the hormone in the two cell models investigated. To identify mechanisms by which ERα exerts its effects on oestrogen-responsive miRNA genes, the oestrogen-dependent miRNA expression profiles were integrated with global in vivo ERα binding site mapping in the genome by ChIP-Seq. In addition, data from miRNA and messenger RNA (mRNA) expression profiles obtained under identical experimental conditions were compared to identify relevant miRNA target transcripts. Results show that miRNAs modulated by ERα represent a novel genomic pathway to impact oestrogen-dependent processes that affect hormone-responsive breast cancer cell behaviour. MiRNome analysis in tumour tissues from breast cancer patients confirmed a strong association between expression of these small RNAs and clinical outcome of the disease, although this appears to involve only marginally the oestrogen-regulated miRNAs identified in this study

    Transcriptomic profiling of calcified aortic valves in clonal hematopoiesis of indeterminate potential carriers

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the presence of clones of mutated blood cells without overt blood diseases. In the last few years, it has emerged that CHIP is associated with atherosclerosis and coronary calcification and that it is an independent determinant of cardiovascular mortality. Recently, CHIP has been found to occur frequently in patients with calcific aortic valve disease (CAVD) and it is associated with a poor prognosis after valve replacement. We assessed the frequency of CHIP by DNA sequencing in the blood cells of 168 CAVD patients undergoing surgical aortic valve replacement or transcatheter aortic valve implantation and investigated the effect of CHIP on 12 months survival. To investigate the pathological process of CAVD in CHIP carriers, we compared by RNA-Seq the aortic valve transcriptome of patients with or without CHIP and non-calcific controls. Transcriptomics data were validated by immunohistochemistry on formalin-embedded aortic valve samples. We confirm that CHIP is common in CAVD patients and that its presence is associated with higher mortality following valve replacement. Additionally, we show, for the first time, that CHIP is often accompanied by a broad cellular and humoral immune response in the explanted aortic valve. Our results suggest that an excessive inflammatory response in CHIP patients may be related to the onset and/or progression of CAVD and point to B cells as possible new effectors of CHIP-induced inflammation

    Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Get PDF
    Background: Estrogen receptors alpha (ERa) and beta (ERb) are transcription factors (TFs) that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC). The two receptors can be found co-expressed and play specific, often opposite, roles, with ERb being able to modulate the effects of ERa on gene transcription and cell proliferation. ERb is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERb in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results: Expression of full-length ERb in hormone-responsive, ERa-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERb and 6024 ERa binding sites in estrogen-stimulated cells, comprising sites occupied by either ERb, ERa or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERb+ vs ERb- cells, 424 showed one or more ERb site within 10 kb. These putative primary ERb target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERb binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions: Results indicate that the vast majority of the genomic targets of ERb can bind also ERa, suggesting that the overall action of ERb on the genome of hormone-responsive BC cells depends mainly on the relative concentration of both ERs in the cell
    • …
    corecore