645 research outputs found
Specific heat of an S=1/2 Heisenberg ladder compound Cu(CHN)Cl under magnetic fields
Specific heat measurements down to 0.5 K have been performed on a single
crystal sample of a spin-ladder like compound
Cu(CHN)Cl under magnetic fields up to 12
T. The temperature dependence of the observed data in a magnetic field below 6
T is well reproduced by numerical results calculated for the S=1/2 two-leg
ladder with /=5. In the gapless region above 7 T
(), the agreement between experiment and calculation is good above
about 2 K and a sharp and a round peak were observed below 2 K in a magnetic
field around 10 T, but the numerical data show only a round peak, the magnitude
of which is smaller than that of the observed one. The origin of the sharp peak
and the difference between the experimental and numerical round peak are
discussed.Comment: 14 pages, 11 figures, Submitted to PR
Field-Induced Two-Step Phase Transitions in the Singlet Ground State Triangular Antiferromagnet CsFeBr
The ground state of the stacked triangular antiferromagnet CsFeBr is a
spin singlet due to the large single ion anisotropy . The
field-induced magnetic ordering in this compound was investigated by the
magnetic susceptibility, the magnetization process and specific heat
measurements for an external field parallel to the -axis. Unexpectedly, two
phase transitions were observed in the magnetic field higher than 3 T. The
phase diagram for temperature versus magnetic field was obtained. The mechanism
leading to the successive phase transitions is discussed.Comment: 8 pages, 9 figures, 10 eps files, jpsj styl
Role of Multichance Fission in the Description of Fission-Fragment Mass Distributions at High Energies
Fission-fragment mass distributions were measured for U237-240, Np239-242, and Pu241-244 populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction O18+U238 at the Japan Atomic Energy Agency tandem facility. Among them, the data for U240 and Np240,241,242 were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission
Measurement of the spin and magnetic moment of 23Al
For the first time, we obtained the g factor for the ground state of 23Al by use of a -NMR measurement. 23Al has a small proton separation energy and is a potential proton-halo candidate. The obtained g factor, |g|=1.557±0.088, clearly shows the spin and parity, J=5/2+, for 23Al, which is the same as that of its mirror partner, 23Ne. The possible nuclear structure of 23Al is also discussed
Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events
collected by the Telescope Array (TA) detector in the first 40 months of
operation. Following earlier studies, we examine event sets with energy
thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the
events in right ascension and declination are compatible with an isotropic
distribution in all three sets. We then compare with previously reported
clustering of the UHECR events at small angular scales. No significant
clustering is found in the TA data. We then check the events with E>57 EeV for
correlations with nearby active galactic nuclei. No significant correlation is
found. Finally, we examine all three sets for correlations with the large-scale
structure of the Universe. We find that the two higher-energy sets are
compatible with both an isotropic distribution and the hypothesis that UHECR
sources follow the matter distribution of the Universe (the LSS hypothesis),
while the event set with E>10 EeV is compatible with isotropy and is not
compatible with the LSS hypothesis at 95% CL unless large deflection angles are
also assumed. We show that accounting for UHECR deflections in a realistic
model of the Galactic magnetic field can make this set compatible with the LSS
hypothesis.Comment: 10 pages, 9 figure
The Hyper Suprime-Cam SSP Survey: Overview and Survey Design
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of
the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of
scientists from Japan, Taiwan and Princeton University is using HSC to carry
out a 300-night multi-band imaging survey of the high-latitude sky. The survey
includes three layers: the Wide layer will cover 1400 deg in five broad
bands (), with a point-source depth of . The
Deep layer covers a total of 26~deg in four fields, going roughly a
magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter
still in two pointings of HSC (a total of 3.5 deg). Here we describe the
instrument, the science goals of the survey, and the survey strategy and data
processing. This paper serves as an introduction to a special issue of the
Publications of the Astronomical Society of Japan, which includes a large
number of technical and scientific papers describing results from the early
phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the
coordinates of HSC-Wide spring equatorial field in Table
Theoretical Aspects of Charge Ordering in Molecular Conductors
Theoretical studies on charge ordering phenomena in quarter-filled molecular
(organic) conductors are reviewed. Extended Hubbard models including not only
the on-site but also the inter-site Coulomb repulsion are constructed in a
straightforward way from the crystal structures, which serve for individual
study on each material as well as for their systematic understandings. In
general the inter-site Coulomb interaction stabilizes Wigner crystal-type
charge ordered states, where the charge localizes in an arranged manner
avoiding each other, and can drive the system insulating. The variety in the
lattice structures, represented by anisotropic networks in not only the
electron hopping but also in the inter-site Coulomb repulsion, brings about
diverse problems in low-dimensional strongly correlated systems. Competitions
and/or co-existences between the charge ordered state and other states are
discussed, such as metal, superconductor, and the dimer-type Mott insulating
state which is another typical insulating state in molecular conductors.
Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state
for example due to the spin-Peierls transition, is considered as well. Distinct
situations are pointed out: influences of the coupling to the lattice degree of
freedom and effects of geometrical frustration which exists in many molecular
crystals. Some related topics, such as charge order in transition metal oxides
and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special
issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized
fil
- …