48 research outputs found

    Charcoal does not change the decomposition rate of mixed litters in a mineral cambisol: a controlled conditions study

    Full text link
    It has been recently shown that the presence of charcoal might promote humus decomposition in the soil. We investigated the decomposition rate of charcoal and litters of different biochemical quality mixed together in a soil incubation under controlled conditions. Despite the large range of organic substrate quality used in this study, we did not find any difference in the decomposition between the average of two individual substrates decomposing separately and the same substrates mixed together. We concluded that charcoal does not always promote other organic matter decomposition and that its particular effect might depend on various factors, for example, soil properties

    Global fire emissions buffered by the production of pyrogenic carbon

    Get PDF
    Landscape fires burn 3–5 million km2 of the Earth’s surface annually. They emit 2.2 Pg of carbon per year to the atmosphere, but also convert a significant fraction of the burned vegetation biomass into pyrogenic carbon. Pyrogenic carbon can be stored in terrestrial and marine pools for centuries to millennia and therefore its production can be considered a mechanism for long-term carbon sequestration. Pyrogenic carbon stocks and dynamics are not considered in global carbon cycle models, which leads to systematic errors in carbon accounting. Here we present a comprehensive dataset of pyrogenic carbon production factors from field and experimental fires and merge this with the Global Fire Emissions Database to quantify the global pyrogenic carbon production flux. We found that 256 (uncertainty range: 196–340) Tg of biomass carbon was converted annually into pyrogenic carbon between 1997 and 2016. Our central estimate equates to 12% of the annual carbon emitted globally by landscape fires, which indicates that their emissions are buffered by pyrogenic carbon production. We further estimate that cumulative pyrogenic carbon production is 60 Pg since 1750, or 33–40% of the global biomass carbon lost through land use change in this period. Our results demonstrate that pyrogenic carbon production by landscape fires could be a significant, but overlooked, sink for atmospheric CO2

    Savanna burning methodology for fire management and emissions reduction: a critical review of influencing factors

    Get PDF
    Savanna fire is a major source of global greenhouse gas (GHG) emissions. In Australia, savanna fire contributes about 3% of annual GHG emissions reportable to the Kyoto Protocol. In order to reduce GHG emissions from savanna burning, the Australian government has developed and approved a Kyoto compliant savanna controlled burning methodology—the first legal instrument of this kind at a global level—under its Emission Reduction Fund. However, this approved methodology is currently only applicable to nine vegetation fuel types across northern parts of Australia in areas which receive on average over 600 mm rainfall annually, covering only 15.4% of the total land area in Australia.Savanna ecosystems extend across a large proportion of mainland Australia. This paper provides a critical review often key factors that need to be considered in developing a savanna burning methodology applicable to the other parts of Australia. It will also inform discussion in other countries intent on developing similar emissions reduction strategies

    Nanoparticle release from dental composites

    No full text
    Dental composites typically contain high amounts (up to 60vol.%) of nanosized filler particles. There is a current concern that dental personnel (and patients) may inhale nanosized dust particles (10(6)cm(-3)). The median diameter of airborne composite dust varied between 38 and 70nm. Electron microscopic and energy dispersive X-ray analysis confirmed that the airborne particles originated from the composite, and revealed that the dust particles consisted of filler particles or resin or both. Though composite dust exhibited no significant oxidative reactivity, more toxicological research is needed. To conclude, on manipulation with the bur, dental composites release high concentrations of nanoparticles that may enter deeply into the lungs.publisher: Elsevier articletitle: Nanoparticle release from dental composites journaltitle: Acta Biomaterialia articlelink: http://dx.doi.org/10.1016/j.actbio.2013.09.044 content_type: article copyright: Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.status: publishe
    corecore