41 research outputs found

    Effects of a moderate intake of beer on markers of hydration after exercise in the heat: a crossover study

    Get PDF
    Background: Exercise in the heat causes important water and electrolytes losses through perspiration. Optimal rehydration is crucial to facilitate the recuperation process after exercise. The aim of our study was to examine whether a moderate beer intake as part of the rehydration has any negative effect protocol after a short but dehydrating bout of exercise in the heat.Methods: Sixteen active male (VO2max, 56 ± 4 mL/kg/min), were included in a crossover study and performed a dehydrating exercise (≤1 h running, 60 %VO2max) twice and 3 weeks apart, in a hot laboratory setting (35 ± 1 °C, humidity 60 ± 2 %). During the two hours following the exercise bouts participants consumed either mineral water ad-libitum (W) or up to 660 ml regular beer followed by water ad-libitum (BW). Body composition, hematological and serum parameters, fluid balance and urine excretion were assessed before, after exercise and after rehydration.Results: Body mass (BM) decreased (both ~ 2.4 %) after exercise in both trials. After rehydration, BM and fat free mass significantly increased although BM did not return to baseline levels (BM, 72.6 ± 6.7 to 73.6 ± 6.9; fat free mass, 56.9 ± 4.7 to 57.5 ± 4.5, no differences BW vs W). Beer intake did not adversely affect any measured parameter. Fluid balance and urine excretion values did not differ between the rehydration strategies.Conclusions: After exercise and subsequent water losses, a moderate beer (regular) intake has no deleterious effects on markers of hydration in active individuals.This study was partially supported by the “Centro de Información Cerveza y Salud” (n° C-2534-00)

    EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary reference values for water

    Get PDF
    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of dietary reference values for water for specific age groups. Adequate Intakes (AI) have been defined derived from a combination of observed intakes in population groups with desirable osmolarity values of urine and desirable water volumes per energy unit consumed. The reference values for total water intake include water from drinking water, beverages of all kind, and from food moisture and only apply to conditions of moderate environmental temperature and moderate physical activity levels (PAL 1.6). AIs for infants in the first half of the first year of life are estimated to be 100-190 mL/kg per day. For infants 6-12 months of age a total water intake of 800-1000 mL/day is considered adequate. For the second year of life an adequate total water intake of 1100-1200 mL/day is defined by interpolation, as intake data are not available. AIs of water for children are estimated to be 1300 mL/day for boys and girls 2-3 years of age; 1600 mL/day for boys and girls 4-8 years of age; 2100 mL/day for boys 9-13 years of age; 1900 mL/day for girls 9-13 years of age. Adolescents of 14 years and older are considered as adults with respect to adequate water intake. Available data for adults permit the definition of AIs as 2.0 L/day (P 95 3.1 L) for females and 2.5 L/day (P95 4.0 L) for males. The same AIs as for adults are defined for the elderly. For pregnant women the same water intake as in non-pregnant women plus an increase in proportion to the increase in energy intake (300 mL/day) is proposed. For lactating women adequate water intakes of about 700 mL/day above the AIs of non-lactating women of the same age are derive

    Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling

    Get PDF
    Palladin and SPIN90 are widely expressed proteins, which participate in modulation of actin cytoskeleton by binding to a variety of scaffold and signaling molecules. Cytoskeletal reorganization can induced by activation of signaling pathways, including the PDGF receptor and Src tyrosine kinase pathways. In this study we have analyzed the interplay between palladin, SPIN90 and Src, and characterized the role of palladin and SPIN90 in PDGF and Src-induced cytoskeletal remodeling. We show that the SH3 domains of SPIN90 and Src directly bind palladin’s poly-proline sequence and the interaction controls intracellular targeting of SPIN90. In PDGF-treated cells, palladin and SPIN90 co-localize in actin rich membrane ruffles and lamellipodia. The effect of PDGF on the cytoskeleton is at least partly mediated by the Src kinase, since PP2, a selective Src kinase family inhibitor, blocked PDGF-induced changes. Furthermore, expression of active Src kinase resulted in coordinated translocation of both palladin and SPIN90 to membrane protrusions. Knock-down of endogenous SPIN90 did not inhibit Src-induced cytoskeletal rearrangement, whereas knock-down of palladin resulted in cytoskeletal disorganization and inhibition of remodeling. Further studies showed that palladin is tyrosine phosphorylated in cells expressing active Src indicating bidirectional interplay between palladin and Src. These results may have implications in understanding the invasive and metastatic phenotype of neoplastic cells induced by Src
    corecore