42 research outputs found

    CD226 (DNAM-1) Is Involved in Lymphocyte Function–associated Antigen 1 Costimulatory Signal for Naive T Cell Differentiation and Proliferation

    Get PDF
    Upon antigen recognition by the T cell receptor, lymphocyte function–associated antigen 1 (LFA-1) physically associates with the leukocyte adhesion molecule CD226 (DNAM-1) and the protein tyrosine kinase Fyn. We show that lentiviral vector-mediated mutant (Y-F322) CD226 transferred into naive CD4+ helper T cells (Ths) inhibited interleukin (IL)-12–independent Th1 development initiated by CD3 and LFA-1 ligations. Moreover, proliferation induced by LFA-1 costimulatory signal was suppressed in mutant (Y-F322) CD226-transduced naive CD4+ and CD8+ T cells in the absence of IL-2. These results suggest that CD226 is involved in LFA-1–mediated costimulatory signals for triggering naive T cell differentiation and proliferation. We also demonstrate that although LFA-1, CD226, and Fyn are polarized at the immunological synapse upon stimulation with anti-CD3 in CD4+ and CD8+ T cells, lipid rafts are polarized in CD4+, but not CD8+, T cells. Moreover, proliferation initiated by LFA-1 costimulatory signal is suppressed by lipid raft disruption in CD4+, but not CD8+, T cells, suggesting that the LFA-1 costimulatory signal is independent of lipid rafts in CD8+ T cells

    Accelerated tumor growth in mice deficient in DNAM-1 receptor

    Get PDF
    Since the identification of ligands for human and mouse DNAM-1, emerging evidence has suggested that DNAM-1 plays an important role in the T cell– and natural killer (NK) cell–mediated recognition and lysis of tumor cells. However, it remains undetermined whether DNAM-1 is involved in tumor immune surveillance in vivo. We addressed this question by using DNAM-1–deficient mice. DNAM-1–deficient cytotoxic T lymphocyte (CTL) and NK cells showed significantly less cytotoxic activity against DNAM-1 ligand-expressing tumors in vitro than wild-type (WT) cells. The methylcholanthrene (MCA)-induced fibrosarcoma cell line Meth A expressed the DNAM-1 ligand CD155, and DNAM-1–deficient mice showed increased tumor development and mortality after transplantation of Meth A cells. Moreover, the DNAM-1–deficient mice developed significantly more DNAM-1 ligand-expressing fibrosarcoma and papilloma cells in response to the chemical carcinogens MCA and 7,12-dimethylbenz[a]anthracene (DMBA), respectively, than did WT mice. These results indicate that DNAM-1 plays an important role in immune surveillance of tumor development

    Paired Activating and Inhibitory Immunoglobulin-like Receptors, MAIR-I and MAIR-II, Regulate Mast Cell and Macrophage Activation

    Get PDF
    Immune responses are regulated by opposing positive and negative signals triggered by the interaction of activating and inhibitory cell surface receptors with their ligands. Here, we describe novel paired activating and inhibitory immunoglobulin-like receptors, designated myeloid-associated immunoglobulin-like receptor (MAIR) I and MAIR-II, whose extracellular domains are highly conserved by each other. MAIR-I, expressed on the majority of myeloid cells, including macrophages, granulocytes, mast cells, and dendritic cells, contains the tyrosine-based sorting motif and the immunoreceptor tyrosine-based inhibitory motif-like sequences in the cytoplasmic domain and mediates endocytosis of the receptor and inhibition of IgE-mediated degranulation from mast cells. On the other hand, MAIR-II, expressed on subsets of peritoneal macrophages and B cells, associates with the immunoreceptor tyrosine-based activation motif-bearing adaptor DAP12 and stimulates proinflammatory cytokines and chemokine secretions from macrophages. Thus, MAIR-I and MAIR-II play important regulatory roles in cell signaling and immune responses

    Infectious Pneumonia and Lower Airway Microorganisms in Patients with Rheumatoid Arthritis

    Get PDF
    The relationship between microorganisms present in the lower respiratory tract and the subsequent incidence of pneumonia in patients with rheumatoid arthritis is unclear. A retrospective cohort study was designed to include a total of 121 patients with rheumatoid arthritis who underwent bronchoscopy at three hospitals between January 2008 and December 2017. Data on patient characteristics, microorganisms detected by bronchoscopy, and subsequent incidences of pneumonia were obtained from electronic medical records. Patients were divided into groups based on the microorganisms isolated from the lower respiratory tract. The cumulative incidence of pneumonia was assessed using the Kaplan–Meier method, and decision tree analysis was performed to analyze the relation between the presence of microorganisms and the occurrence of pneumonia. The most frequently isolated microbes were Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae. Patients whose samples tested negative for bacteria or positive for normal oral flora were included in the control group. The rate of the subsequent incidence of pneumonia was higher in the P. aeruginosa group than in the control group (p = 0.026), and decision tree analysis suggested that P. aeruginosa and patient performance status were two important factors for predicting the incidence of pneumonia. In patients with rheumatoid arthritis, the presence of P. aeruginosa in the lower respiratory tract was associated with the subsequent incidence of pneumonia

    Isolation and characterization of naïve follicular dendritic cells

    Get PDF
    Follicular dendritic cells (FDC) are specialized antigen-presenting cells to cognate B cells in the follicle of the lymphoid tissues. FDC also support survival and proliferation of the B cells, leading to the germinal center formation. FDC therefore play a central role in humoral immune responses. However, molecular and functional characteristics of FDC are largely unknown, because it is difficult to isolate and analyze FDC due to a very small number of FDC in the lymphoid tissues and the fragility by mechanical and chemical stresses in vitro. In this report, we established a novel method for FDC isolation from the spleen of naïve mice by flow cytometry and analyzed the phenotypical and functional characteristics. The isolated FDC, which accounted for ∼0.2% of the spleen cells of naïve mice, were CD45−, FDC-M2+, and ICAM-1+, and supported the survival and LPS-induced proliferation of B cells. We also showed that a neutralizing antibody against B cell activating factor TNF family (BAFF) suppressed FDC-dependent B cell proliferation in the presence of LPS, but not survival, demonstrating the evidence that FDC-derived BAFF is involved in B cell proliferation

    Dual assemblies of an activating immune receptor, MAIR-II, with ITAM-bearing adapters DAP12 and FcR gamma chain on peritoneal macrophages

    Get PDF
    Certain activating immune receptors expressed on myeloid cells noncovalently associate with either DAP12 or Fc epsilon RI gamma (FcR gamma chain), the ITAM-bearing transmembrane adapter proteins. An activating receptor, myeloid-associated Ig-like receptor (MAIR) II, is expressed on a subset of B cells and macrophages in the spleen and peritoneal cavity of mice and associates with DAP12 in these cells. However, we demonstrate here that cross-linking MAIR-II with mAb induced secretion of a significant amount of the inflammatory cytokines TNF-alpha and IL-6 from DAP12(-/-) as well as wild-type (WT) peritoneal macrophages. We show that MAIR-II associates with not only DAP12 but also FcR gamma chain homodimers in peritoneal macrophages. LPS enhanced the FcR gamma chain expression and FcR gamma chain-dependent cell surface expression of MAIR-II and had additive effects on MAIR-II-mediated inflammatory cytokine secretion from peritoneal macrophages. The lysine residue in the transmembrane region of MAIR-II was involved in the association with FcR-y chain as well as DAP12. Our findings present the first case of an activating receptor that uses either DAP12 or FcRC gamma chain as a signaling adapter. The FcR-y chain may provide cooperation with and/or compensation for DAP12 in MAIR-II-mediated inflammatory responses by peritoneal macrophages
    corecore