14 research outputs found

    High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys.

    Get PDF
    Two highly active mud volcanoes located in 990-1,265 m water depths were mapped on the northern Egyptian continental slope during the BIONIL expedition of R/V Meteor in October 2006. High-resolution swath bathymetry and backscatter imagery were acquired with an autonomous underwater vehicle (AUV)-mounted multibeam echosounder, operating at a frequency of 200 kHz. Data allowed for the construction of similar to 1 m pixel bathymetry and backscatter maps. The newly produced maps provide details of the seabed morphology and texture, and insights into the formation of the two mud volcanoes. They also contain key indicators on the distribution of seepage and its tectonic control. The acquisition of high-resolution seafloor bathymetry and acoustic imagery maps with an AUV-mounted multibeam echosounder fills the gap in spatial scale between conventional multibeam data collected from a surface vessel and in situ video observations made from a manned submersible or a remotely operating vehicle

    Cold Seep Systems

    No full text
    ‘Cold’ seeps (or cold vents) are seafloor manifestations of fluid migration through sediments from the subsurface to the seabed and into the water column, and may reach the atmosphere. They are an important but not fully understood process in our oceans that has important repercussions on human society and on the climate. Modern sonar systems can obtain seafloor images of cold seep features from tens to thousands of meters wide with metric resolution, providing key information on the formation and evolution of the various seabed expressions of cold seeps. In this chapter we attempt to address cold seep systems with an emphasis on their origin, evolution, form, and occurrence, approaching them primarily from their morphologies and the acoustic character of the seafloor and near bottom erupted sediments. We address morphological characteristics of mud volcanoes, pockmarks, carbonate-related structures including MDAC, AOM and giant carbonate mounds and ridges, offering various examples mainly from recent discoveries in Mediterranean region which are among the most spectacular and most frequently cited examples. Detailed focus on topics such as acoustic backscatter, brine pools, etc. have been described in separate gray boxes of text with the aim to highlight their particular significance. Finally, gaps in knowledge and key research questions on cold seep studies have been outlined with the aim of orienting young researchers and students towards those topics that deserve the highest attention as they are still unresolved.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, ItaliaFREMER Laboratoire Aléas géologiques et Dynamique Sédimentaire Centre Bretagne, FranciaÁrea de Geología Marina, Instituto Geológico y Minero de España, EspañaLyngby Marine Geophysical Research, Países BajosPeer reviewe

    Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara

    No full text
    To extend comparative metagenomic analyses of the deep-sea, we produced metagenomic data by direct 454 pyrosequencing from bathypelagic plankton (1000 m depth) and bottom sediment of the Sea of Marmara, the gateway between the Eastern Mediterranean and the Black Seas. Data from small subunit ribosomal RNA (SSU rRNA) gene libraries and direct pyrosequencing of the same samples indicated that Gamma- and Alpha-proteobacteria, followed by Bacteroidetes, dominated the bacterial fraction in Marmara deep-sea plankton, whereas Planctomycetes, Delta- and Gamma-proteobacteria were the most abundant groups in high bacterial-diversity sediment. Group I Crenarchaeota/Thaumarchaeota dominated the archaeal plankton fraction, although group II and III Euryarchaeota were also present. Eukaryotes were highly diverse in SSU rRNA gene libraries, with group I (Duboscquellida) and II (Syndiniales) alveolates and Radiozoa dominating plankton, and Opisthokonta and Alveolates, sediment. However, eukaryotic sequences were scarce in pyrosequence data. Archaeal amo genes were abundant in plankton, suggesting that Marmara planktonic Thaumarchaeota are ammonia oxidizers. Genes involved in sulfate reduction, carbon monoxide oxidation, anammox and sulfatases were over-represented in sediment. Genome recruitment analyses showed that Alteromonas macleodii ‘surface ecotype', Pelagibacter ubique and Nitrosopumilus maritimus were highly represented in 1000 m-deep plankton. A comparative analysis of Marmara metagenomes with ALOHA deep-sea and surface plankton, whale carcasses, Peru subsurface sediment and soil metagenomes clustered deep-sea Marmara plankton with deep-ALOHA plankton and whale carcasses, likely because of the suboxic conditions in the deep Marmara water column. The Marmara sediment clustered with the soil metagenome, highlighting the common ecological role of both types of microbial communities in the degradation of organic matter and the completion of biogeochemical cycles

    Seismic parameters re-determined from historical seismograms of 1935-Erdek–Marmara Island and 1963-Çınarcık Earthquakes

    Get PDF
    In this study, the original seismograms of the 1935-Erdek–Marmara Island and 1963-Cinarcik Earthquakes, recorded at local and regional distances, were vectorized. The epicentral locations have been calculated using available readings from original records and also ISS and seismic station bulletins for 04.01.1935-14:41 and 16:20 Marmara Island–Erdek Earthquakes and 18.09.1963-16:58 Cinarcik Earthquake. The epicenter determinations show that the first event in 04.01.1935 was located at 40.72N–27.72E, while the second one occurred at 40.61N–27.43E, indicating that both were located near the Marmara Island. Another finding is that the 1963 event was located at 40.80N–29.18E, near the Princes' Island fault. Furthermore, moment tensor inversion method was applied on these earthquakes by using original seismograms, which provided an opportunity to illuminate the seismotectonic features of Marmara Region based on the retrieved fault mechanism solutions. For the first time, the fault mechanisms for 04.01.1935-14:41 and 16:20 Earthquakes were determined using moment tensor inversion from the original seismic waveforms. Likewise, the result obtained for the fault mechanism of 1963 Cinarcik Earthquake showed normal fault mechanism with much shallower depth than estimated before. Our preferred solutions showed that the fault mechanisms for the three events are normal faults and coincide with the seismotectonic structure of the Marmara Region

    Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara

    No full text
    A rotating, acoustic gas bubble detector, BOB (Bubble OBservatory) module was deployed during two surveys, conducted in 2009 and 2011 respectively, to study the temporal variations of gas emissions from the Marmara seafloor, along the North Anatolian Fault zone. The echosounder mounted on the instrument insonifies an angular sector of 7° during a given duration (of about 1 h). Then it rotates to the next, near-by angular sector and so forth. When the full angular domain is insonified, the “pan and tilt system” rotates back to its initial position, in order to start a new cycle (of about 1 day). The acoustic data reveal that gas emission is not a steady process, with observed temporal variations ranging between a few minutes and 24 h (from one cycle to the other). Echo-integration and inversion performed on the acoustic data as described in the companion paper of Leblond et al. (Mar Geophys Res, 2014), also indicate important variations in, respectively, the target strength and the volumetric flow rates of individual sources. However, the observed temporal variations may not be related to the properties of the gas source only, but reflect possible variations in sea-bottom currents, which could deviate the bubble train towards the neighboring sector. During the 2011 survey, a 4-component ocean bottom seismometer (OBS) was co-located at the seafloor, 59 m away from the BOB module. The acoustic data from our rotating, monitoring system support, but do not provide undisputable evidence to confirm, the hypothesis formulated by Tary et al. (2012), that the short-duration, non-seismic micro-events recorded by the OBS are likely produced by gas-related processes within the near seabed sediments. Hence, the use of a multibeam echosounder, or of several split beam echosounders should be preferred to rotating systems, for future experiments

    A review of 20 years (1999–2019) of Turkish–French collaboration in marine geoscience research in the Sea of Marmara

    No full text

    Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities

    No full text
    Cold seep communities in the Mediterranean Sea have only been discovered two decades ago, and their trophic ecology has been the subject of very few studies. We investigated the benthic food web of two deep chemosynthesis-based ecosystems on the Napoli and Amsterdam mud volcanoes (MVs) in the eastern Mediterranean Sea (similar to 2,000 m depth). Seeping methane has been detected at the surface of both MVs during pioneering cruises and has been hypothesised to be assimilated by benthic fauna as observed in other oceans' margins. Given the extreme oligotrophic character of the eastern Mediterranean Sea, we a priori expected that chemosynthetic food sources, especially methane-derived carbon (MDC), played a major trophic role in these deep seep communities relative to what has been observed in other seep systems worldwide. We aimed at unravelling the trophic relationships on Napoli and Amsterdam MVs through the analysis of carbon, nitrogen and sulphur isotopes both in the dominant benthic invertebrates including the small endofauna (300 mu m < size < 1 cm) and in the sedimented organic matter. In particular, we assessed the fraction of MDC in the tissue of several heterotrophic and symbiotic species. Low mean delta(34)S and delta(13)C values (0.4 +/- A 4.8aEuro degrees and -31.6 +/- A 5.7aEuro degrees, respectively) obtained for mega- and macrofauna suggested that the investigated benthic food webs are virtually exclusively fuelled by carbon of chemosynthetic origin. A few grazer invertebrates (delta(34)S up to 11aEuro degrees) depart from this trend and could complement their diet with sedimented and decayed phytoplanktonic organic matter. Faunal delta(13)C values indicated that the oxidation of sulphur is likely the predominant energetic pathway for biosynthesis on both MVs. Nevertheless, mytilid bivalves and small capitellid, ampharetid and spionid polychaetes were (13)C-depleted (delta(13)C < -37aEuro degrees) in a way indicating they assimilated a significant portion of MDC. For these later heterotrophic species, MDC ranged between 21 and 31% (lower estimates) and 97 and 100% (upper estimates). However, our results highlighted that the origin of assimilated carbon may be complex for some symbiotic species. The vestimentiferan tubeworm Lamellibrachia sp., which exclusively depends on its sulphur-oxidising endosymbionts, showed a similar to 20aEuro degrees inter-individual delta(13)C variability on a very small spatial scale (< 1 m) at the summit of Napoli MV. This mostly reflects the variable isotopic composition of pore-water-dissolved inorganic carbon (DIC) and evidenced that tubeworms (and subsequently their endosymbionts) uptake DIC derived from multiple methane oxidation processes in varying proportions. The lower and upper MDC estimates for the vestimentum of Napoli's individuals were 11-38 and 21-73%, respectively. Finally, data on trophic ecology of Napoli and Amsterdam MVs clearly corroborate previous geophysical results evidencing the spatial heterogeneity of Mediterranean MV environmental conditions.IFREMERHERMES - 511234ANR DeepOases - ANR06BDV00
    corecore