23 research outputs found
Galactic cannibalism in the galaxy cluster C0337-2522 at z=0.59
According to the galactic cannibalism model, cD galaxies are formed in the
center of galaxy clusters by merging of massive galaxies and accretion of
smaller stellar systems: however, observational examples of the initial phases
of this process are lacking. We have identified a strong candidate for this
early stage of cD galaxy formation: a group of five elliptical galaxies in the
core of the X-ray cluster C0337-2522 at redshift z=0.59. With the aid of
numerical simulations, in which the galaxies are represented by N-body systems,
we study their dynamical evolution up to z=0; the cluster dark matter
distribution is also described as a N-body system. We find that a multiple
merging event in the considered group of galaxies will take place before z=0
and that the merger remnant preserves the Fundamental Plane and the
Faber-Jackson relations, while its behavior with respect to the Mbh-sigma
relation is quite sensitive to the details of black hole merging [abridged].Comment: 30 pages, 7 figures, MNRAS (accepted
Parallelization, Special Hardware and Post-Newtonian Dynamics in Direct N - Body Simulations
The formation and evolution of supermassive black hole (SMBH) binaries during and after galaxy mergers is an important ingredient for our understanding of galaxy formation and evolution in a cosmological context, e.g. for predictions of cosmic star formation histories or of SMBH demographics (to predict events that emit gravitational waves). If galaxies merge in the course of their evolution, there should be either many binary or even multiple black holes, or we have to find out what happens to black hole multiples in galactic nuclei, e.g. whether they come sufficiently close to merge resulting from emission of gravitational waves, or whether they eject each other in gravitational slingshot interactions
A pilgrimage to gravity on GPUs
In this short review we present the developments over the last 5 decades that
have led to the use of Graphics Processing Units (GPUs) for astrophysical
simulations. Since the introduction of NVIDIA's Compute Unified Device
Architecture (CUDA) in 2007 the GPU has become a valuable tool for N-body
simulations and is so popular these days that almost all papers about high
precision N-body simulations use methods that are accelerated by GPUs. With the
GPU hardware becoming more advanced and being used for more advanced algorithms
like gravitational tree-codes we see a bright future for GPU like hardware in
computational astrophysics.Comment: To appear in: European Physical Journal "Special Topics" : "Computer
Simulations on Graphics Processing Units" . 18 pages, 8 figure
The Intriguing Distribution of Dark Matter in Galaxies
We review the most recent evidence for the amazing properties of the density
distribution of dark matter around spiral galaxies. Their rotation curves,
coadded according to the galaxy luminosity, conform to an universal profile
which can be represented as the sum of an exponential thin disk plus a
spherical halo with a flat density core. From dwarfs to giants, these halos
feature an inner constant density region. The fine structure of dark matter
halos is obtained from the kinematics of a number of suitable low-luminosity
disk galaxies. The halo circular velocity increases linearly with radius out to
the edge of the stellar disk, implying a constant dark halo density over the
entire disk region. The properties of halos around normal spirals provide
substantial evidence of a discrepancy between the mass distributions predicted
in the Cold Dark Matter scenario and those actually detected around galaxies.Comment: 12 pages, 7 figures. Invited lecture to the 8th Adriatic Meeting:
Particle Physics in the New Millennium, Dubrovnik 4-14 Sep. 2001. To be
published in the series Lecture Notes in Physics, by Springer Verla
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Colliders and Cosmology
Dark matter in variations of constrained minimal supersymmetric standard
models will be discussed. Particular attention will be given to the comparison
between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Tides in colliding galaxies
Long tails and streams of stars are the most noticeable upshots of galaxy
collisions. Their origin as gravitational, tidal, disturbances has however been
recognized only less than fifty years ago and more than ten years after their
first observations. This Review describes how the idea of galactic tides
emerged, in particular thanks to the advances in numerical simulations, from
the first ones that included tens of particles to the most sophisticated ones
with tens of millions of them and state-of-the-art hydrodynamical
prescriptions. Theoretical aspects pertaining to the formation of tidal tails
are then presented. The third part of the review turns to observations and
underlines the need for collecting deep multi-wavelength data to tackle the
variety of physical processes exhibited by collisional debris. Tidal tails are
not just stellar structures, but turn out to contain all the components usually
found in galactic disks, in particular atomic / molecular gas and dust. They
host star-forming complexes and are able to form star-clusters or even
second-generation dwarf galaxies. The final part of the review discusses what
tidal tails can tell us (or not) about the structure and content of present-day
galaxies, including their dark components, and explains how tidal tails may be
used to probe the past evolution of galaxies and their mass assembly history.
On-going deep wide-field surveys disclose many new low-surface brightness
structures in the nearby Universe, offering great opportunities for attempting
galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in
Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most
welcom
CGS: Collisionless Galactic Simulator
CGS (Collisionless Galactic Simulator) uses Fourier techniques to solve the Poisson equation, relating the mean potential of a system to the mass density. The angular dependence of the force is treated exactly in terms of the single-particle Legendre polynomials, which preserves accuracy and avoids systematic errors. The density is assigned to a radial grid by means of a cloud-in-cell scheme with a linear kernel, i.e., a particle contributes to the density of the two closest cells with a weight depending linearly on the distance from the center of the cell considered. The same kernel is then used to assign the force from the grid to the particle. The time step is chosen adaptively in such a way that particles are not allowed to cross more than one radial cell during one step. CGS is based on van Albada's code (1982) and is distributed in the NEMO (ascl:1010.051) Stellar Dynamics Toolbox