19 research outputs found

    Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia.

    Get PDF
    Large-scale genomic studies of within-host diversity in Staphylococcus aureus bacteraemia (SAB) are needed to understanding bacterial adaptation underlying persistence and thus refining the role of genomics in management of SAB. However, available comparative genomic studies of sequential SAB isolates have tended to focus on selected cases of unusually prolonged bacteraemia, where secondary antimicrobial resistance has developed. To understand bacterial genetic diversity during SAB more broadly, we applied whole genome sequencing to a large collection of sequential isolates obtained from patients with persistent or relapsing bacteraemia. After excluding genetically unrelated isolates, we performed an in-depth genomic analysis of point mutations and chromosome structural variants arising within individual SAB episodes. We show that, while adaptation pathways are heterogenous and episode-specific, isolates from persistent bacteraemia have a distinctive molecular signature, characterised by a low mutation frequency and high proportion of non-silent mutations. Analysis of structural genomic variants revealed that these often overlooked genetic events are commonly acquired during SAB. We discovered that IS256 insertion may represent the most effective driver of within-host microevolution in selected lineages, with up to three new insertion events per isolate even in the absence of other mutations. Genetic mechanisms resulting in significant phenotypic changes, such as increases in vancomycin resistance, development of small colony phenotypes, and decreases in cytotoxicity, included mutations in key genes (rpoB, stp, agrA) and an IS256 insertion upstream of the walKR operon. This study provides for the first time a large-scale analysis of within-host genomic changes during invasive S. aureus infection and describes specific patterns of adaptation that will be informative for both understanding S. aureus pathoadaptation and utilising genomics for management of complicated S. aureus infections

    Is M. ulcerans able to colonize neuronal cells?

    Get PDF
    Buruli ulcer, or Mycobacterium ulcerans infection, is an emerging disease, principally diagnosed in humid tropical countries and inducing large skin ulcers. These lesions are painless, a distinct feature that suggests that the mycolactone toxin and/or M. ulcerans impedes the signal transmission by the nervous system. In this context, the aim of this work was to study the interaction between M. ulcerans and neuronal cells by using in vitro and in vivo models. We showed that a virulent strain of M. ulcerans is able to enter into neurons cultivated from neonatal rat hippocampus. On the contrary, this phenomenon was less observed with a mycolactone-deficient strain. To support these data, we analysed nerve fibres from mouse-infected tissues and few bacilli were found in close contact with nerve fibres. The invasion process established by M. ulcerans to colonize the nervous system remains uncharacterised, but we hypothesise that this ability could be involved in the painless of the M. ulcerans infection

    Regulation of mycolactone, the Mycobacterium ulcerans toxin, depends on nutrient source

    Get PDF
    BACKGROUND: Mycobacterium ulcerans, a slow-growing environmental bacterium, is the etiologic agent of Buruli ulcer, a necrotic skin disease. Skin lesions are caused by mycolactone, the main virulence factor of M. ulcerans, with dermonecrotic (destruction of the skin and soft tissues) and immunosuppressive activities. This toxin is secreted in vesicles that enhance its biological activities. Nowadays, it is well established that the main reservoir of the bacilli is localized in the aquatic environment where the bacillus may be able to colonize different niches. Here we report that plant polysaccharides stimulate M. ulcerans growth and are implicated in toxin synthesis regulation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, by selecting various algal components, we have identified plant-specific carbohydrates, particularly glucose polymers, capable of stimulating M. ulcerans growth in vitro. Furthermore, we underscored for the first time culture conditions under which the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, is down-regulated. Using a quantitative proteomic approach and analyzing transcript levels by RT-qPCR, we demonstrated that its regulation is not at the transcriptional or translational levels but must involve another type of regulation. M. ulcerans produces membrane vesicles, as other mycobacterial species, in which are the mycolactone is concentrated. By transmission electron microscopy, we observed that the production of vesicles is independent from the toxin production. Concomitant with this observed decrease in mycolactone production, the production of mycobacterial siderophores known as mycobactins was enhanced. CONCLUSIONS/SIGNIFICANCE: This work is the first step in the identification of the mechanisms involved in mycolactone regulation and paves the way for the discovery of putative new drug targets in the future

    Australian Enterococcal Sepsis Outcome Progamme, 2011

    Get PDF
    From 1 January to 31 December 2011, 29 institutions around Australia participated in the Australian Enterococcal Sepsis Outcome Programme (AESOP). The aim of AESOP 2011 was to determine the proportion of enterococcal bacteraemia isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to ampicillin and the glycopeptides, and to characterise the molecular epidemiology of the Enterococcus faecalis and E. faecium isolates. Of the 1,079 unique episodes of bacteraemia investigated, 95.8% were caused by either E. faecalis (61.0%) or E. faecium (34.8%). Ampicillin resistance was detected in 90.4% of E. faecium but not detected in E. faecalis. Using Clinical and Laboratory Standards Institute breakpoints (CLSI), vancomycin non-susceptibility was reported in 0.6% and 31.4% of E. faecalis and E. faecium respectively and was predominately due to the acquisition of the vanB operon. Approximately 1 in 6 vanB E. faecium isolates however, had an minimum inhibitory concentration at or below the CLSI vancomycin susceptible breakpoint of ≤ 4 mg/L. Overall, 37% of E. faecium harboured vanA or vanB genes. Although molecular typing identified 126 E. faecalis pulsed-field gel electrophoresis (PFGE) pulsotypes, more than 50% belonged to 2 pulsotypes that were isolated across Australia. E. faecium consisted of 73 PFGE pulsotypes from which 43 multilocus sequence types were identified. Almost 90% of the E. faecium were identified as clonal complex 17 clones, of which approximately half were characterised as sequence type 203, which was isolated Australia-wide. In conclusion, the AESOP 2011 has shown that although polyclonal, enterococcal bacteraemias in Australia are frequently caused by ampicillin-resistant vanB E. faecium

    Multiple Introductions and Recent Spread of the Emerging Human Pathogen Mycobacterium ulcerans across Africa

    Get PDF
    YesBuruli ulcer (BU) is an insidious neglected tropical disease. Cases are reported around the world but the rural regions of West and Central Africa are most affected. How BU is transmitted and spreads has remained a mystery, even though the causative agent, Mycobacterium ulcerans, has been known for more than 70 years. Here, using the tools of population genomics, we reconstruct the evolutionaryhistoryofM. ulceransbycomparing165isolatesspanning48yearsandrepresenting11endemiccountriesacrossAfrica. The genetic diversity of African M. ulcerans was found to be restricted due to the bacterium’s slow substitution rate coupled with its relatively recent origin. We identified two specific M. ulcerans lineages within the African continent, and inferred that M. ulcerans lineage Mu_A1 existed in Africa for several hundreds of years, unlike lineage Mu_A2, which was introduced much more recently, approximately during the 19th century. Additionally, we observed that specific M. ulcerans epidemic Mu_A1 clones were introduced during the same time period in the three hydrological basins that were well covered in our panel. The estimated time span of the introduction events coincides with the Neo-imperialism period, during which time the European colonial powers divided the African continent among themselves. Using this temporal association, and in the absence of a known BU reservoir or—vector on the continent, we postulate that the so-called "Scramble for Africa" played a significant role in the spread of the disease across the continent.K.V. was supported by a PhD-grant of the Flemish Interuniversity Council—University Development Cooperation (Belgium). B.d.J. and C.M. were supported by the European Research Council-INTERRUPTB starting grant (no. 311725). T.P.S. was supported by a fellowship from the National Health and Medical Research Council of Australia (1105525). Funding for this work was provided by the Department of Economy, Science and Innovation of the Flemish Government, the Stop Buruli Consortium supported by the UBS Optimus Foundation, and the Fund for Scientific Research Flanders (Belgium) (FWO grant no. G.0321.07N). The computational resources used in this work were provided by the HPC core facility CalcUA and VSC (Flemish Supercomputer Center), funded by the University of Antwerp, the Hercules Foundation and the Flemish Government—department EWI. Aspects of the research in Cameroon and Benin were funded by the Raoul Follereau Fondation France

    Buruli Ulcer (Buruli-Ulkus)

    No full text

    Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections.

    No full text
    Management of invasive Staphylococcus aureus infections is complex. Dramatic improvements in bacterial whole genome sequencing (WGS) offer new opportunities for personalising the treatment of S. aureus infections. Areas covered: We address recent achievements in S. aureus genomics, describe genetic determinants of antibiotic resistance and summarise studies that have defined molecular characteristics associated with risk and outcome of S. aureus invasive infections. Potential clinical use of WGS for resistance prediction, infection outcome stratification and management of persistent /relapsing infections is critically discussed. Expert commentary: WGS is not only providing invaluable information to track the emergence and spread of important S. aureus clones, but also allows rapid determination of resistance genotypes in the clinical environment. An evolving opportunity is to infer clinically important outcomes and optimal therapeutic approaches from widely available S. aureus genome data, with the goal of individualizing management of invasive S. aureus infections

    Stringent response-mediated control of GTP homeostasis is required for long-term viability of staphylococcus aureus

    Get PDF
    Staphylococcus aureus is an opportunistic bacterial pathogen that often results in difficult-to-treat infections. One mechanism used by S. aureus to enhance survival during infection is the stringent response. This is a stress survival pathway that utilizes the nucleotides (p)ppGpp to reallocate bacterial resources, shutting down growth until conditions improve. Small colony variants (SCVs) of S. aureus are frequently associated with chronic infections, and this phenotype has previously been linked to a hyperactive stringent response. Here, we examine the role of (p)ppGpp in the long-term survival of S. aureus under nutrient-restricted conditions. When starved, a (p)ppGpp-null S. aureus mutant strain ((p)ppGpp0) initially had decreased viability. However, after 3 days we observed the presence and dominance of a population of small colonies. Similar to SCVs, these small colony isolates (p0-SCIs) had reduced growth but remained hemolytic and sensitive to gentamicin, phenotypes that have been tied to SCVs previously. Genomic analysis of the p0-SCIs revealed mutations arising within gmk, encoding an enzyme in the GTP synthesis pathway. We show that a (p)ppGpp0 strain has elevated levels of GTP, and that the mutations in the p0-SCIs all lower Gmk enzyme activity and consequently cellular GTP levels. We further show that in the absence of (p)ppGpp, cell viability can be rescued using the GuaA inhibitor decoyinine, which artificially lowers the intracellular GTP concentration. Our study highlights the role of (p)ppGpp in GTP homeostasis and underscores the importance of nucleotide signaling for long-term survival of S. aureus in nutrient-limiting conditions, such as those encountered during infections. IMPORTANCE Staphylococcus aureus is a human pathogen that upon invasion of a host encounters stresses, such as nutritional restriction. The bacteria respond by switching on a signaling cascade controlled by the nucleotides (p)ppGpp. These nucleotides function to shut down bacterial growth until conditions improve. Therefore, (p)ppGpp are important for bacterial survival and have been implicated in promoting chronic infections. Here, we investigate the importance of (p)ppGpp for long-term survival of bacteria in nutrient-limiting conditions similar to those in a human host. We discovered that in the absence of (p)ppGpp, bacterial viability decreases due to dysregulation of GTP homeostasis. However, the (p)ppGpp-null bacteria were able to compensate by introducing mutations in the GTP synthesis pathway that led to a reduction in GTP build-up and a rescue of viability. This study therefore highlights the importance of (p)ppGpp for the regulation of GTP levels and for long-term survival of S. aureus in restricted environments

    1,2,4-Oxadiazole antimicrobials act synergistically with daptomycin and display rapid kill kinetics against MDR Enterococcus faecium

    No full text
    Background: Enterococcus faecium is an important nosocomial pathogen. It has a high propensity for horizontal gene transfer, which has resulted in the emergence of MDR strains that are difficult to treat. The most notorious of these, vancomycin-resistant E. faecium, are usually treated with linezolid or daptomycin. Resistance has, however, been reported, meaning that new therapeutics are urgently needed. The 1,2,4-oxadiazoles are a recently discovered family of antimicrobials that are active against Gram-positive pathogens and therefore have therapeutic potential for treating E. faecium. However, only limited data are available on the activity of these antimicrobials against E. faecium. Objectives: To determine whether the 1,2,4-oxadiazole antimicrobials are active against MDR and daptomycinnon- susceptible E. faecium. Methods: The activity of the 1,2,4-oxadiazole antimicrobials against vancomycin-susceptible, vancomycin-resistant and daptomycin-non-susceptible E. faecium was determined using susceptibility testing, time-kill assays and synergy assays. Toxicity was also evaluated against human cells by XTT and haemolysis assays. Results: The 1,2,4-oxadiazoles are active against a range of MDR E. faecium, including isolates that display nonsusceptibility to vancomycin and daptomycin. This class of antimicrobial displays rapid bactericidal activity and demonstrates superior killing of E. faecium compared with daptomycin. Finally, the 1,2,4-oxadiazoles act synergistically with daptomycin against E. faecium, with subinhibitory concentrations reducing the MIC of daptomycin for non-susceptible isolates to a level below the clinical breakpoint. Conclusions: The 1,2,4-oxadiazoles are active against MDR and daptomycin-non-susceptible E. faecium and hold great promise as future therapeutics for treating infections caused by these difficult-to-treat isolates
    corecore