927 research outputs found
Anisotropic Aerogels for Studying Superfluid He
It may be possible to stabilize new superfluid phases of He with
anisotropic silica aerogels. We discuss two methods that introduce anisotropy
in the aerogel on length scales relevant to superfluid He. First,
anisotropy can be induced with uniaxial strain. A second method generates
anisotropy during the growth and drying stages. We have grown cylindrical
98% aerogels with anisotropy indicated by preferential radial shrinkage
after supercritical drying and find that this shrinkage correlates with small
angle x-ray scattering (SAXS). The growth-induced anisotropy was found to be
out of phase relative to that induced by strain. This has
implications for the possible stabilization of superfluid phases with specific
symmetry.Comment: 6 pages, 4 figures, submitted to Quantum Fluids and Solids (QFS)
conference 200
Magnetic and quadrupole moments of light spin-1 mesons in light cone QCD sum rules
The magnetic and quadrupole moments of the light-vector and axial-vector
mesons are calculated in the light cone QCD sum rules. Our results for the
static properties of these mesons are compared with the predictions of lattice
QCD as well as other approaches existing in the literature.Comment: 11 pages, NO figures, LaTeX formatte
Globally Anisotropic High Porosity Silica Aerogels
We discuss two methods by which high porosity silica aerogels can be
engineered to exhibit global anisotropy. First, anisotropy can be introduced
with axial strain. In addition, intrinsic anisotropy can result during growth
and drying stages and, suitably controlled, it can be correlated with
preferential radial shrinkage in cylindrical samples. We have performed small
angle X-ray scattering (SAXS) to characterize these two types of anisotropy. We
show that global anisotropy originating from either strain or shrinkage leads
to optical birefringence and that optical cross-polarization studies are a
useful characterization of the uniformity of the imposed global anisotropy.Comment: 18 pages, 14 figures, submitted to Journal of Non-Crystalline Solid
Robustness of quantum Markov chains
If the conditional information of a classical probability distribution of
three random variables is zero, then it obeys a Markov chain condition. If the
conditional information is close to zero, then it is known that the distance
(minimum relative entropy) of the distribution to the nearest Markov chain
distribution is precisely the conditional information. We prove here that this
simple situation does not obtain for quantum conditional information. We show
that for tri-partite quantum states the quantum conditional information is
always a lower bound for the minimum relative entropy distance to a quantum
Markov chain state, but the distance can be much greater; indeed the two
quantities can be of different asymptotic order and may even differ by a
dimensional factor.Comment: 14 pages, no figures; not for the feeble-minde
Connecting Berry's phase and the pumped charge in a Cooper pair pump
The properties of the tunnelling-charging Hamiltonian of a Cooper pair pump
are well understood in the regime of weak and intermediate Josephson coupling,
i.e. when . It is also known that
Berry's phase is related to the pumped charge induced by the adiabatical
variation of the eigenstates. We show explicitly that pumped charge in Cooper
pair pump can be understood as a partial derivative of Berry's phase with
respect to the phase difference across the array. The phase fluctuations
always present in real experiments can also be taken into account, although
only approximately. Thus the measurement of the pumped current gives reliable,
yet indirect, information on Berry's phase. As closing remarks, we give the
differential relation between Berry's phase and the pumped charge, and state
that the mathematical results are valid for any observable expressible as a
partial derivative of the Hamiltonian.Comment: 5 pages, 5 figures, RevTeX, Presentation has been clarifie
Specific Heat Discontinuity in Impure Two-Band Superconductors
The Ginzburg-Landau coefficients, and the jump of the specific heat are
calculated for a disordered two-band superconductor. We start with the analysis
of a more general case arbitrary anisotropy. While the specific heat
discontinuity at the critical temperature T_c decreases with increasing
disorder, its ratio to the normal state specific heat at T_c increases and
slowly converges to the isotropic value. For a strong disorder the deviation
from the isotropic value is proportional to the elastic electron scattering
time. In the case of a two-band superconductor we apply a simplified model of
the interaction independent on momentum within a band. In the framework of this
model all thermodynamic values can be found explicitly at any value of the
scattering rate. This solution explains the sample dependence of the specific
heat discontinuity in MgB_2 and the influence of the disorder on the critical
temperature.Comment: New results relate to two-band superconductors, 9 pages, 2 figure
Triplet superconductivity in a one-dimensional ferromagnetic t-J model
In this paper we study the ground state phase diagram of a one-dimensional
model, at half-filling. In the large-bandwidth limit and for
ferromagnetic exchange with easy-plane anisotropy, a phase with gapless charge
and massive spin excitations, characterized by the coexistence of triplet
superconducting () and spin density wave () instabilities is
realized in the ground state. With reduction of the bandwidth, a transition
into an insulating phase showing properties of the spin-1/2 XY model takes
place. In the case of weakly anisotropic antiferromagnetic exchange the system
shows a long range dimerized (Peierls) ordering in the ground state. The
complete weak-coupling phase diagram of the model, including effects of the
on-site Hubbard interaction, is obtained
Understanding the newly observed Y(4008) by Belle
Very recently a new enhancement around 4.05 GeV was observed by Belle
experiment. In this short note, we discuss some possible assignments for this
enhancement, i.e. and molecular state. In these two
assignments, Y(4008) can decay into with comparable
branching ratio with that of . Thus one suggests
high energy experimentalists to look for Y(4008) in channel.
Furthermore one proposes further experiments to search missing channel
, and especially and
, which will be helpful to distinguish and
molecular state assignments for this new enhancement.Comment: 4 pages, 5 figures. Typos correcte
Temporal changes in plant soil feedback effects on microbial networks, leaf metabolomics and plant-insect interactions
1. The importance of plant–soil feedbacks (PSF) for above-ground and below-ground multitrophic interactions is well recognized. However, most studies only condition soil for a short time before testing the feedback response. Here we investigate the influence of time of conditioning on soil microbiome composition, plant growth and metabolomics, and plant–insect interactions. We used soil collected from large outdoor mesocosms with monocultures of six species and investigated the temporal changes in the soil over a full year.2. Every 2 months, we assessed the legacy effects of the soils on plant growth of one of the species (Jacobaea vulgaris) in a climate-controlled chamber. Each time we used tissue culture plants that were genetically identical. We also measured leaf herbivore performance and leaf metabolomes, as well as the abiotic and biotic soil properties.3. We show that the monoculture soils harboured different microbiomes, but that these varied over time. Growth of the test plants also varied over time and plants grew consistently less well in their own soil. The soil legacy effects on the leaf metabolome were less consistent and varied strongly over time. Networking analysis showed that soil bacteria had stronger effects on the leaf metabolome than fungi early on. However, after 12 months of conditioning, only soil fungal community composition explained the metabolomic profiles of the leaves. Insect herbivory was not affected by soil conditioning, but decreased with increasing time of conditioning.4. Synthesis. Our results show that the biomass response of the test plants to soil conditioning remained consistent throughout the year, even though both the soil microbiome and leaf metabolomic responses to conditioned soil varied greatly over time. These soil-induced changes in the metabolome of plants over time can be an important driver of above-ground multitrophic interactions in nature. Our study demonstrates that the duration of conditioning has a strong impact on plant and soil properties, which highlights that temporal variation is an important aspect to consider in future studies investigating plant–soil interactions.NWOEnvironmental Biolog
Mitteilungen
Zur Unterscheidung von Rhynchosporium- und Ascochyta-Befall an Wintergerste W. W. BeerEmpfehlungen für Untersuchungen von zugelassenen Beizmitteln zur Wirksamkeit und Wirkungsdauer gegen bodenbürtigen Befall mit Fusarium nivale an Winterweizen und -gerste Sind pflanzenpathogene Viren gesundheitsschädlich?H.-L. PaulVerhalten von Kartoffel-Neuzüchtungen gegenüber verschiedenen Pathotypen von Synchytrium endobioticum (Schilb.) Perc., dem Erreger des KartoffelkrebsesE. Langerfeld, W. Bätz11th Long Ashton International Symposium Bristol 11.-14.9.1989 Herbicide Resistance in Weeds and CropsAntje DietzTechnical Meeting der IOBC/WPRS-Arbeitsgruppe "Pflanzenschutzmittel und Nutzorganismen", 19.-21. September 1989 in Antibes, FrankreichH. KohsiekMitglieder im Fachbeirat „Geräte" (früher Ausschuß für Geräte)H. KohsiekLiteratu
- …