350 research outputs found

    DNA fragility in the parallel evolution of pelvic reduction in stickleback fish

    Get PDF
    Evolution generates a remarkable breadth of living forms, but many traits evolve repeatedly, by mechanisms that are still poorly understood. A classic example of repeated evolution is the loss of pelvic hindfins in stickleback fish (Gasterosteus aculeatus). Repeated pelvic loss maps to recurrent deletions of a pelvic enhancer of the Pitx1 gene. Here, we identify molecular features contributing to these recurrent deletions. Pitx1 enhancer sequences form alternative DNA structures in vitro and increase double-strand breaks and deletions in vivo. Enhancer mutability depends on DNA replication direction and is caused by TG-dinucleotide repeats. Modeling shows that elevated mutation rates can influence evolution under demographic conditions relevant for sticklebacks and humans. DNA fragility may thus help explain why the same loci are often used repeatedly during parallel adaptive evolution

    Tracing Functional Antigen-Specific CCR6+ Th17 Cells after Vaccination

    Get PDF
    BACKGROUND: The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6 (CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17) cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological immune response is still elusive. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the development and functionality of Th17 cells in immune-competent mice during an ongoing immune response. In naïve and vaccinated animals CCR6(+) Th cells produce IL-17. The robust homeostatic proliferation and the presence of activation markers on CCR6(+) Th cells indicate their activated status. Vaccination induces antigen-specific CCR6(+) Th17 cells that respond to in vitro re-stimulation with cytokine production and proliferation. Furthermore, depletion of CCR6(+) Th cells from donor leukocytes prevents recipients from severe disease in experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections

    The Diffusion of Inclusion: An Open Polity Model of Ethnic Power Sharing

    Get PDF
    While there is a growing consensus that ethnic inclusion produces peace, less is known about what causes transitions to power sharing between ethnic groups in central governments in multiethnic states. The few studies that have addressed this question have proposed explanations stressing exclusively domestic factors. Yet, power sharing is spatially clustered, which suggests that diffusion may be at play. Inspired by studies of democratic diffusion, we study the spread of inclusive policies with an “open polity model” that explicitly traces diffusion from inclusion in other states. Our findings indicate that the relevant diffusion processes operate primarily at the level of world regions rather than globally or between territorial neighbors. Thus, the more inclusive the region, the more likely a shift to power sharing becomes. Shifts away from inclusion to dominance are less common since World War II, but they are more likely in regional settings characterized by ethnic exclusion

    Phosphoinositide Regulation of Integrin Trafficking Required for Muscle Attachment and Maintenance

    Get PDF
    Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease

    Diversification of  T Cell Responses to Carboxy-terminal Determinants within the 65-kD Heat-shock Protein Is Involved in Regulation of Autoimmune Arthritis

    Get PDF
    The T cell response to the 65-kD mycobacterial heat-shock protein (Bhsp65) has been implicated in the pathogenesis of autoimmune arthritis. Adjuvant arthritis (AA) induced in the Lewis rat (RT-1l) by injection of Mycobacterium tuberculosis serves as an experimental model for human rheumatoid arthritis (RA). However, the immunological basis of regulation of acute AA, or of susceptibility/resistance to AA is not known. We have defined the specificity of the proliferative T cell responses to Bhsp65 during the course of AA in the Lewis rat. During the early phase of the disease (6–9 d after onset of AA), Lewis rats raised T cell responses to many determinants within Bhsp65, spread throughout the molecule. Importantly, in the late phase of the disease (8–10 wk after onset of AA), there was evidence for diversification of the T cell responses toward Bhsp65 carboxy-terminal determinants (BCTD) (namely, 417–431, 441–455, 465–479, 513–527, and 521–535). Moreover, arthritic rats in the late phase of AA also raised vigorous T cell responses to those carboxy-terminal determinants within self(rat) hsp65 (Rhsp65) that correspond in position to the above BCTD. These results suggest that the observed diversification is possibly triggered in vivo by induction of self(Rhsp65)-reactive T cells. Interestingly, another strain of rat, the Wistar Kyoto (WKY/NHsd) rat (RT-1l), with the same major histocompatibility complex class II molecules as the Lewis rat, was found to be resistant to AA. In WKY rats, vigorous responses to the BCTD, to which the Lewis rat responded only in the late phase of AA, were observed very early, 10 d after injection of M. tuberculosis. Strikingly, pretreatment with the peptides comprising the set of BCTD, but not its amino-terminal determinants, provided significant protection to naive Lewis rats from subsequent induction of AA. Thus, T cell responses to the BCTD are involved in regulating inflammatory arthritis in the Lewis rat and in conferring resistance to AA in the WKY rat. These results have important implications in understanding the pathogenesis of RA and in devising new immunotherapeutic strategies for this disease

    Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses

    Get PDF
    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1–Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern

    Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses

    Get PDF
    While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1–Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern
    corecore