7,552 research outputs found

    Breakdown of Angular Momentum Selection Rules in High Pressure Optical Pumping Experiments

    Full text link
    We present measurements, using two complementary methods, of the breakdown of atomic angular momentum selection rules in He-broadened Rb vapor. Atomic dark states are rendered weakly absorbing due to fine-structure mixing during Rb-He collisions. The effect substantially increases the photon demand for optical pumping of dense vapors

    Finite Element Model study of the Effect of Corner Rounding on Detectability of Corner Cracks using Bolt-Hole Eddy Current

    Get PDF
    Recent work has shown that the detectability of corner cracks in bolt-holes is compromised when rounding of corners arises, as might occur during bolt-hole removal. Probability of Detection (POD) studies normally require a large number of samples of both fatigue cracks and electric discharge machined notches. In the particular instance of rounding of bolt-hole corners, the generation of such a large set of samples representing the full spectrum of potential rounding would be prohibitive. In this paper, the application of Finite Element Method (FEM) modeling is used to supplement the study of detection of cracks forming at the rounded corners of bolt-holes. FEM models show that rounding of the corner of the bolt-hole reduces the size of the response to a corner crack to a greater extent than can be accounted for by loss of crack area. This reduced sensitivity can be ascribed to a lower concentration of eddy currents at the rounded corner surface and greater lift-off of pick-up coils relative to that of a straight-edge corner. A rounding with a radius of 0.4 mm (.016 inch) showed a 20% reduction in the strength of the crack signal. Assuming linearity of the crack signal with crack size, this would suggest an increase in the minimum detectable size by 25%. Modeling results are consistent with measurements performed on cracks grown on bolt-hole samples extracted from service

    KMOS view of the Galactic Centre - II. Metallicity distribution of late-type stars

    Get PDF
    Knowing the metallicity distribution of stars in the Galactic Centre has important implications for the formation history of the Milky Way nuclear star cluster. However, this distribution is not well known, and is currently based on a small sample of fewer than 100 stars. We obtained near-infrared K-band spectra of more than 700 late-type stars in the central 4 pc^2 of the Milky Way nuclear star cluster with the integral-field spectrograph KMOS (VLT). We analyse the medium-resolution spectra using a full-spectral fitting method employing the G\"ottingen Spectral library of synthetic PHOENIX spectra. The derived stellar metallicities range from metal-rich [M/H]>+0.3 dex to metal-poor [M/H]<-1.0 dex, with a fraction of 5.2(^{+6.0}+{-3.1}) per cent metal-poor ([M/H]<-0.5 dex) stars. The metal-poor stars are distributed over the entire observed field. The origin of metal-poor stars remains unclear. They could originate from infalling globular clusters. For the metal-rich stellar population ([M/H]>0 dex) a globular cluster origin can be ruled out. As there is only a very low fraction of metal-poor stars in the central 4 pc^2 of the Galactic Centre, we believe that our data can discard a scenario in which the Milky Way nuclear star cluster is purely formed from infalling globular clusters.Comment: 18 pages, 9 Figures, accepted for publication in MNRA

    Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model

    Full text link
    Using a mean-field dynamo model with a spherically symmetric helical turbulence parameter alpha which is dynamically quenched and disturbed by additional noise, the basic features of geomagnetic polarity reversals are shown to be generic consequences of the dynamo action in the vicinity of exceptional points of the spectrum. This simple paradigmatic model yields long periods of constant polarity which are interrupted by self-accelerating field decays leading to asymmetric polarity reversals. It shows the recently discovered bimodal field distribution, and it gives a natural explanation of the correlation between polarity persistence time and field strength. In addition, we find typical features of coherence resonance in the dependence of the persistence time on the noise.Comment: 5 pages, 7 figure

    Intrinsic peculiarities of real material realizations of a spin-1/2 kagome lattice

    Full text link
    Spin-1/2 magnets with kagome geometry, being for years a generic object of theoretical investigations, have few real material realizations. Recently, a DFT-based microscopic model for two such materials, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, was presented [O. Janson, J. Richter and H. Rosner, arXiv:0806.1592]. Here, we focus on the intrinsic properties of real spin-1/2 kagome materials having influence on the magnetic ground state and the low-temperature excitations. We find that the values of exchange integrals are strongly dependent on O--H distance inside the hydroxyl groups, present in most spin-1/2 kagome compounds up to date. Besides the original kagome model, considering only the nearest neighbour exchange, we emphasize the crucial role of the exchange along the diagonals of the kagome lattice.Comment: 4 pages, 4 figures. A paper for the proceedings of the HFM 2008 conferenc

    Wind measurement system

    Get PDF
    A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed

    INTEGRAL/SPI γ -ray line spectroscopy : Response and background characteristics

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors.Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background.Methods. We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors.Results. Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.Peer reviewedFinal Published versio

    Electroweak Fermion-loop Contributions to the Muon Anomalous Magnetic Moment

    Get PDF
    The two-loop electroweak corrections to the anomalous magnetic moment of the muon, generated by fermionic loops, are calculated. An interesting role of the top quark in the anomaly cancellation is observed. New corrections, including terms of order Gμαmt2G_\mu \alpha m_t^2, are computed and a class of diagrams previously thought to vanish are found to be important. The total fermionic correction is −(23±3)×10−11-(23\pm 3) \times 10^{-11} which decreases the electroweak effects on g−2g-2, predicted from one-loop calculations, by 12\%. We give an updated theoretical prediction for g−2g-2 of the muon.Comment: Corrected versio

    Nitrogen/palladium-codoped TiO² for efficient visible light photocatalytic dye degradation

    Get PDF
    Please refer to full text to view abstrac

    Evaluation of Machine Learning Tools for Inspection of Steam Generator Tube Structures using Pulsed Eddy Current

    Get PDF
    Inspection of multi-component systems, such as nuclear steam generator (SG) tube support structures, is complicated by multiple overlapping degradation modes. The simultaneous and precise measurement of more than two interdependent parameters is challenging when standard statistical regression analysis tools are used. Artificial neural networks (ANNs) have recently been applied to pulsed eddy current (PEC) data for inspection of Alloy 800 SG tube fretting, in the presence of tube off-set within a corroded ferromagnetic support structure. Signals were analyzed using modified principal component analysis (MPCA) followed by an ANN analysis, which simultaneously targeted four parameters associated with the support structure. These were hole diameter, tube off-centering in two mutually orthogonal directions and fret depth. In this work, the ANN analysis is compared with that performed by a Support Vector Machine (SVM) analysis of the same data. Comparable results are achieved for some parameters with both machine learning analysis tools. However, parameters with changing signal variance, such as those associated with support structure diameter, are not as easily compensated for using standard SVM analysis. Both techniques also rely on the availability of a representative training data set that may be difficult to come by for general inspection conditions
    • …
    corecore