1,530 research outputs found

    Expression and purification of an adenylation domain from a eukaryotic nonribosomal peptide synthetase: Using structural genomics tools for a challenging target

    Get PDF
    Nonribosomal peptide synthetases (NRPSs) are large multimodular and multidomain enzymes that are involved in synthesising an array of molecules that are important in human and animal health. NRPSs are found in both bacteria and fungi but most of the research to date has focused on the bacterial enzymes. This is largely due to the technical challenges in producing active fungal NRPSs, which stem from their large size and multidomain nature. In order to target fungal NRPS domains for biochemical and structural characterisation, we tackled this challenge by using the cloning and expression tools of structural genomics to screen the many variables that can influence the expression and purification of proteins. Using these tools we have screened 32 constructs containing 16 different fungal NRPS domains or domain combinations for expression and solubility. Two of these yielded soluble protein with one, the third adenylation domain of the SidN NRPS (SidNA3) from the grass endophyte Neotyphodium lolii, being tractable for purification using Ni-affinity resin. The initial purified protein exhibited poor solution behaviour but optimisation of the expression construct and the buffer conditions used for purification, resulted in stable recombinant protein suitable for biochemical characterisation, crystallisation and structure determination

    Structural analysis of the GH43 enzyme Xsa43E from Butyrivibrio proteoclasticus

    Get PDF
    The rumen of dairy cattle can be thought of as a large, stable fermentation vat and as such it houses a large and diverse community of microorganisms. The bacterium Butyrivibrio proteoclasticus is a representative of a significant component of this microbial community. It is a xylan-degrading organism whose genome encodes a large number of open reading frames annotated as fibre-degrading enzymes. This suite of enzymes is essential for the organism to utilize the plant material within the rumen as a fuel source, facilitating its survival in this competitive environment. Xsa43E, a GH43 enzyme from B. proteoclasticus, has been structurally and functionally characterized. Here, the structure of selenomethionine-derived Xsa43E determined to 1.3 Å resolution using single-wavelength anomalous diffraction is reported. Xsa43E possesses the characteristic five-bladed β-propeller domain seen in all GH43 enzymes. GH43 enzymes can have a range of functions, and the functional characterization of Xsa43E shows it to be an arabinofuranosidase capable of cleaving arabinose side chains from short segments of xylan. Full functional and structural characterization of xylan-degrading enzymes will aid in creating an enzyme cocktail that can be used to completely degrade plant material into simple sugars. These molecules have a range of applications as starting materials for many industrial processes, including renewable alternatives to fossil fuels

    Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU

    Get PDF
    Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20

    ‘You don't need a degree to get a coaching job’:investigating the employability of sports coaching degree students

    Get PDF
    Though highly popular, degree-level sports coaching qualifications are in their infancy, and it remains that ‘an individual intending to become an accredited coaching practitioner can only do so by undertaking their sport's national governing body (NGB) coaching award(s)’ [Nelson et al., 2006, p. 254. Formal, nonformal and informal coach learning: A holistic conceptualisation. International Journal of Sports Science & Coaching, 1(3), 247–259]. Consequently, little is known about the development of HE sports coaching students’ employability. This study critically investigates sports coaching students’ degree-study motives, development of employability skills and perceptions of career prospects as graduates. Survey data and follow-up interviews from two U.K. post-92 universities reveal tensions between liberal and vocational philosophies of university education and concerns about the graduate labour market. Critical incidents and missed opportunities in students’ development of key skills for coaching during and outside of university are also discussed

    Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans

    Get PDF
    Very little is known about the growth and mutation rates of Mycobacterium tuberculosis during latent infection in humans. However, studies in rhesus macaques have suggested that latent infections have mutation rates that are higher than that observed during active tuberculosis disease. Elevated mutation rates are presumed risk factors for the development of drug resistance. Therefore, the investigation of mutation rates during human latency is of high importance. We performed whole genome mutation analysis of M. tuberculosis isolates from a multi-decade tuberculosis outbreak of the New Zealand Rangipo strain. We used epidemiological and phylogenetic analysis to identify four cases of tuberculosis acquired from the same index case. Two of the tuberculosis cases occurred within two years of exposure and were classified as recently transmitted tuberculosis. Two other cases occurred more than 20 years after exposure and were classified as reactivation of latent M. tuberculosis infections. Mutation rates were compared between the two recently transmitted pairs versus the two latent pairs. Mean mutation rates assuming 20 hour generation times were 5.5X10⁻¹⁰ mutations/bp/generation for recently transmitted tuberculosis and 7.3X10⁻¹¹ mutations/bp/generation for latent tuberculosis. Generation time versus mutation rate curves were also significantly higher for recently transmitted tuberculosis across all replication rates (p = 0.006). Assuming identical replication and mutation rates among all isolates in the final two years before disease reactivation, the u20hr mutation rate attributable to the remaining latent period was 1.6×10⁻¹¹ mutations/bp/generation, or approximately 30 fold less than that calculated during the two years immediately before disease. Mutations attributable to oxidative stress as might be caused by bacterial exposure to the host immune system were not increased in latent infections. In conclusion, we did not find any evidence to suggest elevated mutation rates during tuberculosis latency in humans, unlike the situation in rhesus macaques

    Remote Sensing of Parasitic Nematodes in Plants

    Get PDF
    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken

    Three hydrophobic amino acids in Escherichia coli HscB make the greatest contribution to the stability of the HscB-IscU complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>General iron-sulfur cluster biosynthesis proceeds through assembly of a transient cluster on IscU followed by its transfer to a recipient apo-protein. The efficiency of the second step is increased by the presence of HscA and HscB, but the reason behind this is poorly understood. To shed light on the function of HscB, we began a study on the nature of its interaction with IscU. Our work suggested that the binding site of IscU is in the C-terminal domain of HscB, and two different triple alanine substitutions ([L92A, M93A, F153A] and [E97A, E100A, E104A]) involving predicted binding site residues had detrimental effects on this interaction. However, the individual contribution of each substitution to the observed effect remains to be determined as well as the possible involvement of other residues in the proposed binding site.</p> <p>Results</p> <p>In the work reported here, we used isothermal titration calorimetry to characterize the affinity of single alanine HscB mutants for IscU, and subsequently confirmed our results with nuclear magnetic resonance spectroscopy. Alanine substitutions of L92, L96, and F153 severely impaired the ability of HscB to form a complex with IscU; substitutions of R87, R99, and E100 had more modest effects; and substitutions of T89, M93, E97, D103, E104, R152, K156, and S160 had only minor or no detectable effects.</p> <p>Conclusions</p> <p>Our results show that the residues of HscB most important for strong interaction with IscU include three hydrophobic residues (L92, L96, and F153); in addition, we identified a number of other residues whose side chains contribute to a lesser extent to the interaction. Our results suggest that the triple alanine substitution at HscB positions 92, 96, and 153 will destabilize the HscB-IscU complex by ΔΔ<it>G</it><sub>b</sub>≅ 5.7 kcal/mol, equivalent to a ≅ 15000-fold reduction in the affinity of HscB for IscU. We propose that this triple mutant could provide a more definitive test of the functional importance of the HscB-IscU interaction in vivo than those used previously that yielded inconclusive results.</p

    Lack of Evidence for the Direct Activation of Endothelial Cells by Adult Female and Microfilarial Excretory-Secretory Products

    Get PDF
    Lymphangiectasia (dilation of the lymphatic vessel (LV)) is pathognomonic for lymphatic filariasis. In both infected humans and animal models of infection, lymphangiectasia is not restricted to the site of the worm nest, but is found along the infected vessel. These observations argue that soluble products secreted by the worm could be mediating this effect by activating the lymphatic endothelial cells (LEC) lining the vessel. We tested the ability of filarial Excretory-Secretory products to activate LECs, but were unable to detect a direct effect of the Excretory-Secretory products on the activation of LEC as assessed by a variety of approaches including cellular proliferation, cell surface molecule expression and cytokine and growth factor production (although other mediators used as positive controls did induce these effects). Collectively, these results do not support the hypothesis that Excretory-Secretory products directly activate LECs

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems
    corecore