88 research outputs found

    Effect of Shear Flow on the Stability of Domains in Two Dimensional Phase-Separating Binary Fluids

    Full text link
    We perform a linear stability analysis of extended domains in phase-separating fluids of equal viscosity, in two dimensions. Using the coupled Cahn-Hilliard and Stokes equations, we derive analytically the stability eigenvalues for long wavelength fluctuations. In the quiescent state we find an unstable varicose mode which corresponds to an instability towards coarsening. This mode is stabilized when an external shear flow is imposed on the fluid. The effect of the shear is seen to be qualitatively similar to that found in experiments.Comment: 13 pages, RevTeX, 8 eps figures included. Submitted to Phys. Rev.

    Pearling and Pinching: Propagation of Rayleigh Instabilities

    Full text link
    A new category of front propagation problems is proposed in which a spreading instability evolves through a singular configuration before saturating. We examine the nature of this front for the viscous Rayleigh instability of a column of one fluid immersed in another, using the marginal stability criterion to estimate the front velocity, front width, and the selected wavelength in terms of the surface tension and viscosity contrast. Experiments are suggested on systems that may display this phenomenon, including droplets elongated in extensional flows, capillary bridges, liquid crystal tethers, and viscoelastic fluids. The related problem of propagation in Rayleigh-like systems that do not fission is also considered.Comment: Revtex, 7 pages, 4 ps figs, PR

    Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification

    Get PDF
    Hypothesis Predicting formation mode of double emulsion drops in microfluidic emulsification is crucial for controlling the drop size and morphology. Experiments and modelling A three-phase Volume of Fluid-Continuum Surface Force (VOF–CSF) model was developed, validated with analytical solutions, and used to investigate drop formation in different regimes. Experimental investigations were done using a glue-free demountable glass capillary device with a true axisymmetric geometry, capable of readjusting the distance between the two inner capillaries during operation. Findings A non-dimensional parameter (ζ) for prediction of double emulsion formation mode as a function of the capillary numbers of all fluids and device geometry was developed and its critical values were determined using simulation and experimental data. At logζ > 5.7, drops were formed in dripping mode; the widening jetting occurred at 5 < logζ < 5.7; while the narrowing jetting was observed at logζ < 5. The ζ criterion was correlated with the ratio of the break-up length to drop diameter. The transition from widening to narrowing jetting was achieved by increasing the outer fluid flow rate at the high capillary number of the inner fluid. The drop size was reduced by reducing the distance between the two inner capillaries and the minimum drop size was achieved when the distance between the capillaries was zero

    The Two Fluid Drop Snap-off Problem: Experiments and Theory

    Get PDF
    We address the dynamics of a drop with viscosity λη\lambda \eta breaking up inside another fluid of viscosity η\eta. For λ=1\lambda=1, a scaling theory predicts the time evolution of the drop shape near the point of snap-off which is in excellent agreement with experiment and previous simulations of Lister and Stone. We also investigate the λ\lambda dependence of the shape and breaking rate.Comment: 4 pages, 3 figure

    Simple Viscous Flows: from Boundary Layers to the Renormalization Group

    Full text link
    The seemingly simple problem of determining the drag on a body moving through a very viscous fluid has, for over 150 years, been a source of theoretical confusion, mathematical paradoxes, and experimental artifacts, primarily arising from the complex boundary layer structure of the flow near the body and at infinity. We review the extensive experimental and theoretical literature on this problem, with special emphasis on the logical relationship between different approaches. The survey begins with the developments of matched asymptotic expansions, and concludes with a discussion of perturbative renormalization group techniques, adapted from quantum field theory to differential equations. The renormalization group calculations lead to a new prediction for the drag coefficient, one which can both reproduce and surpass the results of matched asymptotics

    Equilibrium configurations of fluids and their stability in higher dimensions

    Get PDF
    We study equilibrium shapes, stability and possible bifurcation diagrams of fluids in higher dimensions, held together by either surface tension or self-gravity. We consider the equilibrium shape and stability problem of self-gravitating spheroids, establishing the formalism to generalize the MacLaurin sequence to higher dimensions. We show that such simple models, of interest on their own, also provide accurate descriptions of their general relativistic relatives with event horizons. The examples worked out here hint at some model-independent dynamics, and thus at some universality: smooth objects seem always to be well described by both ``replicas'' (either self-gravity or surface tension). As an example, we exhibit an instability afflicting self-gravitating (Newtonian) fluid cylinders. This instability is the exact analogue, within Newtonian gravity, of the Gregory-Laflamme instability in general relativity. Another example considered is a self-gravitating Newtonian torus made of a homogeneous incompressible fluid. We recover the features of the black ring in general relativity.Comment: 42 pages, 11 Figures, RevTeX4. Accepted for publication in Classical and Quantum Gravity. v2: Minor corrections and references adde
    corecore