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ABSTRACT

The flow of an incompressible viscous fluid past a circular cylinder at low Reynolds
numbers is discussed, with special reference to the formation of a vortex-pair behind
the body. An approximate expression for the stream function given in a previous
paper is revised and supplementary discussion is made. The flow pattern at Reynolds
number equal to 4.0 is re-calculated and the existence of a vortex-pair at this value
of the Reynolds number is confirmed. A brief consideration is also made on the
critical Reynolds number for the first appearance of a pair of vortices.

1. Introduction

In a previous paper (1), the senior writer discussed, in conjunction with T.
Aoi, the steady flow of an incompressible viscous fluid past a sphere and a
circular cylinder at small Reynolds numbers, on the basis of Oseen’s equations
of motion. It was found out later, however, that the approximate expressions
for the current function in the case of a sphere and the stream function in the
case of a circular cylinder as given there (§7) in the forms of Reynolds number
expansion are unfortunately rather incomplete. It is likely that such an incom-
pleteness has considerable influences upon the shape and configuration of a
vortex-pair which may appear behind the obstacle. Thus, it is necessary to
revise some of the discussions in the previous paper (1, §§4 and 8).

One of the objects of the present note is to obtain additional terms to the
previous expressions and to make supplementary discussions. It is shown that
contrary to the previous result, no standing vortex-pair is given at all by revised
approximate formulae for sufficiently small Reynolds number R.

On the other hand, the flow pattern at K=4.0 for the case of a circular
cylinder was also computed in the previous paper (1) by making use of another
approximation in which Lamb’s potential is truncated by finite terms but not
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2 S. TOMOTIKA and T. MIYAGI

expanded in R. The resulting flow involved a fairly large standing vortex-pair
behind the cylinder. Therefore, we repeat here the same analysis by taking
more terms in the series for the stream function so that the result is almost
convergent. Thus, we have confirmed the -existence of a standing vortex-pair
at R=40, though smaller in size than that found previously. In this connection
it may be mentioned that the corresponding discussion for the case of a sphere
was made recently by T. Pearcey and B. McHugh (2), who concluded that in
the case of a sphere, no standing vortex-ring appears up to R=10.

In the present note, a brief discussion is also made on the critical Reynolds
number for the first appearance of a standing pair of vortices behind a circular
cylinder.

2. Solution of Oseen’s equations of motion

We consider the steady two-dimensional flow of an incompressible viscous
fluid past a circular cylinder of radius «. With the origin at the centre of the
cylinder, we take the rectangular coordinates (x, ¥) in the plane of fluid motion
in such a way that the x-axis is along the direction of the uniform stream of
velocity U.

Let # and v be the x— and y-components of the fluid velocity at any point
in the field of flow, p the pressure, p the density and v the coefficient of kine-
matic viscosity of the fluid. Then, Oseen’s equations of motion and the equation
of continuity are given by

Ou 1 9p
e = = = VA,
v . L 9b, .
Tx T o oy VAV
Ou , v _
“6}—*4"3}——0, (2)

where A stands for 02/0x2+0%/0y*. The boundary conditions at the surface of
the cylinder are

u=v=0 at r=a. (3)

In the previous paper (1) use was made of Lamb’s method of solution.
Here we shall use a different but more direct method. In conformity with the
equation of continuity (2) we first infroduce the stream function ¢ such that

w00, 00 (4)
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Then, elimination of p from Egs. (1) gives the fundamental equation for ¢ in
the form:

0

.«;\(AmZk—@—>qb=O, (5)

where k=U/(2).
According to L.N.G. Filon (8), the general solution of this equation (5)

can be expressed as follows:

é (;{-)“" (A, cos nll+ B, sin nfl)

n=1

¢ = Ursin#-+ A, log -;i + Byl +
b, Xekr[Kl(kr) + K, (k) cos 0] oh7 <050 1f
0
- phrcosd f_{; K. (kr){(a, cos nf-+b, sin uf) , (6)

where 7, # are polar coordinates, K,(k#) is the modified Bessel function and
A,)’s, B)’s, a,’s and b,’s are arbitrary constants.
We further introduce the complex velocity u—iv. By use of (6) above, it

can be written in the form:

) 1 @ .a]
2 e — X R R
Uty = [7’ 27 i 1Y
o3 St ! o
= U+ 3Gy ‘2‘”) tekreost 3 caKu(kr) e, (7)
= Prr—-e
with
Copn = Cpey, (74)

where bar implies the complex conjugate and the constants C,’s and ¢,’s are
related to the A,’s, etc. in the forms:

Co = (Bytild/a,

C, = n(B,—iAy)/a, (n=1,2,3 -, ?
Co = /e{bo~%‘~Pi<ao—~%L)} , 5 (8)
Cp == _g‘{bn”bn-!-l'}_i(an_dn-!-l)} R (72 B 1, 2, 3, ) .

In the present case of a circular cylinder, A,=a,=0 for all positive integral
values of n, zero inclusive, and therefore the C,’s and c¢,’s are all real.

Expanding (7) in a Fourier series in 6 and then applying the boundary
conditions (3), we get the following set of linear equations for determining the

constants C,’s and ¢,’s, namely :
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Csart _‘é Cnluis(ha) Kp(ka) = 0, (s=1,2,3,), 1
-U, (s=0), i (9

S Culn o (k) Kn(ka) = {
L_.W ( ) ( t) O, (S - 1,2’3,...)'

o —

Also, if the values of the C,’s and ¢,’s are obtained by solving these equations,
the values of the constants B,’s and ?5,’s can be obtained immediately by (8),

namely :

By = a(y,
By = -2 Ca, (=123, ]

- (10)
b= e

_ 2 & _
b = ey, =123 .

¢ j=n

3. Expansion formula for the stream function

For small ke Eqgs. (9) can be solved by the method of successive approxi-
mations. The results are series expression in ke for the C,’s and ¢,’s, and it is
thus found that C,=O0 [(ke)**] and ¢,=0 [(ka)?]. Also, we get from (10)
similar expressions for the B,’s and b,’s. Inserting these values of the B,’s and
bs's into (6) and expanding the modified Bessel functions for small k7 and further
rearranging the resulting terms with respect to the order in ke, we get the
expansion formula for ¢ in the form:

¢ = ¢o+ RY,+O(RY) an
with
¢y = co[% (73——-%—-) — 7 log rl] sinf,
) 11 ) } (112)
¢y = “IG[V% - “;%‘“F Co”% log T ('*go'* "%‘2)(1— »7({; )] sin 20 s

where R=4dka, ri=r/a, co=-—2/(1+282), £=log (8/R)—7 and 7 is Euler’s constant.
In deriving the formula (11) it is sufficient to take into account only the
first three of the C,’s and c¢,’s respectively. It will readily be seen that the
corresponding formula given in the previous paper (1, Eq. (44)) is lacking in
the last term in the square brackets in ¢,. The cause of such a discrepancy
lies in the rather inadequate truncation of the 'system of equations, corresponding
to the above equations (9), in the previous analysis.

It is expected that the present approximate expression (11) can represent
fairly accurately the flow field around the cylinder for kr&1 at sufficiently
small values of R. In this expression, ¢, is a solution of the Stokes equation
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A2p=(, which gives however logarithmic divergence in velocity at great distances,
while the second term R¢, represents the correction arising from the linearized
inertia term in Egs. (1). ¢ vanishes obviously for » =1 (i.e. at the surface of
the cylinder) and for =0 (i.e., on the axial streamline). But the streamline
¢ =0 may have one more branch given by

[1 n+l »log 7’1]
Cof o o P

2 n 7—1
R[4+ DG+ D ,  rilogrn (6 L o\ntl
@[ ) = R R ( 5 12) 2 ]cosd-—O. 12

in fact, if we drop the last term in the second square brackets, we certainly
obtain the separated streamline ¢ =0 embracing a vortex-pair even for very small
R, as described in the previous paper (1). However, it can be shown that the
full equation (12) does never have real root for all values of the Reynolds number

.[(rl 1\[) sin ¢ ]rl =1

a=0

I:up to RO
II: up to R?
III: up to R2Z 1
IV: up to R3
R4

4 |-

up to

=
———_
0 k- -
N\\\
| | IR s
1 “ i A4 R
. " [\ ) . .
Tig, 1, Values of L( ~1)~) =1 versus I Tor cach degree of approximation,
ry—1) sino_jyl
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R. Thus, the lost term in the previous paper affects seriously the delicate flow
pattern immediately behind the cylinder.

The present writers have also extended the expansion (11) up to the fourth
order term (proportional to R*). The result is fairly complicated and will
not be given here. It may be added, however, that the separated streamline
¢ =0 and hence a vortex-pair does not yet appear for small values of R as far
as the fourth order approximation is concerned. In Fig. 1 the wvalues of
[¢/{(»—1) sin 0} ],,=, ¢=» are plotted against R for each degree of approximation.
The zero point of this function is expected to give the critical Reynolds number
for the first appearance of a standing pair of vortices behind the cylinder. From
the curves for successive approximations and from the nature of the function,
it may be conjectured that the true values of [¢/{(#1—1) sin#} 1, ~1, o lie near
a dotted-line curve in Fig. 1, and thus the value of the critical Reynold number
for the first appearance of a vortex-pair is supposed to be about 3. This point
will be re-considered in the next section.

4. Flow pattern at R=4.0

In the previous paper (1) the flow field at R=4.0 was also computed by
making use of another approximation in which the series for Lamb’s potential
is truncated by finite terms but not expanded in R. The resulting flow involved
a fairly large vortex-pair behind the cylinder. In view of the non-existence of
a standing vortex-pair at sufficiently small R as mentioned in the preceding
section, however, it is desirable to refine the previous calculation for R=4.0.

We have started again from the simultaneous equations (9) for the C,'s and
¢n's. We have first evaluated the functions [, s(ka) K,(ka), etc. for ka=1 (ie.,
R=4.0) and then we have solved the resulting linear algebraic equations for the
C»’s and ¢,’s. Inserting these values of the C,’s and ¢,’s in (10), we have also
obtained the B,'s and 0,’s. With various constants thus determined, Eqgs. (6)
and (7) give respectively the stream function and the complex velocity. The
simultaneous equations (9) are doubly infinite, and therefore in actual computa-
tion we must truncate them adequately by finite terms. The calculation in the
previous paper (1) corresponds to taking the c¢,’s up to ¢,. Here we have taken
the c,’s up to ¢y. The values of the C,’s and ¢,’s are listed in Table I, in which
are also given the values obtained when truncated ¢, ¢;, ¢; and ¢; respectively.
It can readily be seen that our cqapproximation represents almost convergent
result.

The vorticity changes its sign at the separation point of the streamline ¢ =0
on the cylinder and this occurs at #=20.072°, 20.691°, 20.658°, 20.659" and 20.659°
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for the ¢, ¢ ¢, ¢~ and csapproximation, respectively. On the other hand,
the point of intersection of the separated and the axial streamlines is found to
lie at x=1.2057 ¢, 1.2051 ¢, 1.2052 ¢ and 1.2052 ¢, and y=0 for the ¢, ¢r—, ¢~ and
cy-approximation respectively. For the cs—approximation we cannot obtain the
value of the said point of intersection, because in this case the stream function
is very near to zero inside and near the separated streamline. Thus it is seen

that the flow pattern immediately behind the cylinder is in general rather delicate.

Table I. Values of the ¢,’s and C,’s for each degree of approximation.

Cy-approx. Cg-apPProX. C;-approx. Ce-apProx. C5-approx.
Co —1.5703051 —1.5703051 —1.5703051 -1.5703051 —1.5703051
¢, %10 7.0777998 7.0777998 7.0777998 7.0777998 7.0777997
€y 102 —6.9880077 —6.9880077 —6.9880077 —6.9880077 —6.9880044
¢y X 10% 2.7411856 2.7411856 2.7411856 2.7411851 2.7411258
¢y, X 108 —5.5879335 —5.5879335 —5.56879330 -—5.5878643 —5.5821547
€5 X 107 6.9156370 6.9156367 6.9155837 6.9105374 6.6306723
¢ X 10° —5.7320823 —5.7320529 —5.7289149 —5.5295436
¢, X 101 3.4008551 3.3993972 3.2056557
cg X108 | —1.5147279 —1.4733203
€y 1016 5.1530823
Cy 9.2971925 9.2971925 9.2971925 9.2971925 9.2971924
C;x10 —5.7679289 -—5.7679289 —5.7679289 —5.7679288 —5.7679288
C,x 10?2 5.4303441 5.4303441 5.4303440 5.4303440 5.4303439
C3x 1038 4.541038 4541038 4541038 4541038 4541044
C,x10¢ 243383 243383 2.43383 2.43383 2.43355
C5 X108 5.0856 5.0856 5.0856 5.0873 —14.894
CeX107; —5.238 —5.238 —5.238 9.220
C;x10% | —7.568 —17.568 —16.69
Cgx10%8 | —1.111 —0.5977
Cyx10°] ~—1.225

The flow pattern at R=4.0 to the cs~approximation is shown in Fig. 2.

Comparing Fig. 2 with Fig. 3 in the previous paper (1), we find that a
standing pair of vortices given previously is too large in size, perhaps because
of slight inaccuracy of the previous calculation. However, these two figures are
quite in good agreement with each other in other domains of the flow field and
this suggests that so far as the pressure distribution on the surface of the
cylinder, the total drag and etc. are concerned, the previous results are sufficiently
accurate.

Now, observing the definite asymmetry with respect to the ymz}xis of the

over-all flow pattern as shown in Fig. 2 and reflecting upon the accuracy of our
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co-approximation, it may be concluded that a standing vortex-pair is certainly

present at R=4.0 on the basis of the Oseen approximation.

/

‘______________,____-—-—-—V

Fig. 2. Calculated streamlines past a circular cylinder at R=4.0,

Since, however, the size of the vortex-pair in this case is fairly small and
the fluid is almost at rest there, it is expected that a slight reduction of the
Reynolds number below 4.0 will make the vortex-pair vanish immediately. Based
upon this expectation and in view of the result shown in Fig. 1, we have further
computed the flow pattern at R=3.2 to the c,~approximation, obtaining the value

7=9.732° for the point of separation of the streamline ¢ =0 on the cylinder and

streamlines. In this case we find a standing vortex-pair with extremely small
size. Thus, it may be concluded that so far as we are concerned with the Oseen
approximation, the value of the critical Reynolds number for the first appearance
of a standing pair of vortices behind a circular cylinder will not differ too much
from 3. It is of interest to compare this value with an experimental value of
5 found recently by S. Taneda (4).

Lastly, we shall give here, as an addendum, a reviced R-expansion of the
current function for the case of the flow past a sphere, which should take place
of Eq. (20) in the previous paper (1). It is given hy
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Rpa( L )2 )i [o )l 1) Jeont} s

+O(R? . (1)

This result is due to H. Yosinobu (5). The flow field around a sphere has also
been discussed later by T. Pearcey and B. McHugh in a paper cited before (2)

and they have confirmed that a stationary vortex-ring behind the sphere does

not make its appearance at least up to R=10.
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