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                          ABSTRAc"r
   The fiow of an incompressible viscous fiuid pac $t a circular cylinder at lovv Reynolds

numbers is disÅëussed, with special reference to the formation of a vortex-pair behind

the body. An approximate expression for the stream function given in a previous
paper is revised and supplementary discussion is made. The fiow pattern at Reyno!ds
number equal to 4.0 is re-calculated and the existence of a vortex-pair at this value
of the Reynolds number is confirmed. A brief consideration is also macle on the
critical Reynolds number for the first appearance of a pair of vortices.

1. Introduction

   In a previous paper (1), the senior writer dlscussed, in conjunction with T.

Aoi, the steady fiow of an incompressible viscous fluid past a sphere and a

circular cylinder at small Reynolds numbers, on the basis of Oseen's equations

of motion. !t was found out later, however, that the approximate expressions

for the current function in the case of a sphere and the stream function in the

case ofacircu}ar cylinder as given there (b97) in the forms of Reynolds number

expansion are uRfortunately rather incomplete. It is likely that such an iRcom-

pleteness has considerable infiuences gpon the shape and configuration of a

vortex-pair whlch may appear behind the obstacle. Thus, it is necessary to
revise some ef the discussions in the previous paper (1, {}f}4 and 8).

   One of the objects of the present note is to obtain additional terms to the

previous expressions and to make supplementary discussions. It is shown that

contrary to the previous result, no standing vortex-pair is given at all by revised

approximate formulae for suthciently small Reynolds number R.

   On the other hand, the fiow pattern at R=4.0 for tlie case of a circular

cylinder was also computed in the previous paper (1) by making use of aRother

approximation in which Lamb's potential is truncated by finite terms but not
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2 S. TOMOTII<A and T. MIYAGI
expancled in R. The resulting fiow involved a fairly large stancling vortex-pair

behind tke cylinder. Therefore, we repeat here the same analysis by taking

more terms in tlie series for the stream function so tltat tlie result is almost

convergent. Thus, we have confirmed the -existence of a standing vortex-pair
at R:=4.0, though smaller in size than that Åíound previously. In this connection

it may be meiitioned that the corresponding cliscussion for the case of a splaere

was made recent!y by T. Pearcey ancl B. Mcli[ugh (2), who concltzded that in

the case of a sphere, no standing vortex-rlng appears up to R==:iO.

    In the present note, a brief disciission is also macle on tke critical Reynolds

number for the first appearance of a stancling pai!` of vertices behind a circular

cylinder.

2. Selution of Oseen's equations of motion

    We consider the steady two-dimensional flow of an incompressible viscous

fiuid past a circular cylinder of radius a. With the origin at the centre of tlie

cylinder, we take the rectangular coordinates (x, y) in the plane of fluid motion

in suclt a way that the x-axis is along the direction of the uniform stream of

velocity U.

    Let u aRd v be the x- and y-components of tke fiuid velocity at any point

in the field of fiow, p the pres$ure, ,o the density and y the coefacieBt ef kine-

matic viscosity of the fiuid. Then, Oseen's equations of motion and the equatioB

of continuity are givelt by

                         Z-11/IS)I,-:.Intil/bt[liLl,:2:jl (i)

                                   Ov                              azt                              -o-x + ay ==O, (2)

where A stands for 02/Ox2g-02/Oy2. The bozmdary conditioRs at the surface of

the cylinder are

                           u==v=O at r==:a. (3)
   In the previous paper (1) use was made of Lamb's metbod of solution.
Here we shall gse a different but more direct methed. In conformity with the

equation of continuity (2) we first introduce the stream function Åë such that

                              c?Åë                                           0di                          "='" -aywu, V"=: wwune"'],-• (4)



              FLOW OF VISCOUS FLUID PAST CIRCULAR CYLINDER 3

Then, eliminatlon of p from Eqs. (1) gives the fundamental equation for ip in

                          A(A• -2k. -oO-. )Åë == O, (5)

where le == U,•'(2y).

    According to L.N.G. Filon (3), the general solution of this equation (5)

can be expressecl as follows:

         gr :=: Ur sin U' -l,- Aa leg f-:rv B,e-}-.IZII'i (f)ve" (A.. cos nO+B. sin nt7.)

                   -i bele,Ier[I<i(Ier) "K,(fer) co$ fi]eiercoserlfi

                   -t- p. ier coseS K. (ler) (a. cos ne+b. sin fte) , (6)
                          eb=e
                                                             '
where r, e are polar coorclinates, K,,(ler) is the modified Bessel function and

An's, B,t's, an's and bn's are arbitrary constants.

   We further introduce the complex velocity tt-iv. By use of (6) above, it

can be wrltteR in the form :

            u-iz] =:= eww':e[-ll) t.O'er+i oOr ]Åë

                 :== u+ t9.oc,,(-li- eie)M"-iÅÄ eiercose,,tr.. c.K.(ler) eine , ( 7 )

with

                              C-n : Zn-i, (7a)
where bar implies tlie complex conjugate and the constants C.'s ancl c,t's are

related to the A.'s, etc. in the forms:

             Co =" (Bo+iAo)/a,
             Cn m= n(Bn-iA.)/a, (n=1, 2, 3, ••), )

             10. I.III/lliib{11,]bi,/1,iS:Va,fll-ia)il)}, (n=i,2,3, ) j `8'

   In the present case of a circular cylinder, A.=a.=:O for all positive lntegral

values of n, zero inc!usive, and therefore the Cft's and c.'s are all real.

   Expanding (7) in a Fourler series in eand then applying the boundary
conditions (3), we get the followiBg set of linear equations for deterfnining the

constants C,,'s and cn's, namely: • ,
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            Cslllk.S-•:•:.-i'5,//,"leei?'2hai,:uOi ([lliil)Z13,llllill (g)

Also, if the values of the Cn's ancl c.'s are obtaine(l by solving these equations,

the values of the constants B.'s and b.'s can be obtained immediately by (8),

namely :

                    Bo :== aCo,
                    ,B,",-=-/ll/lllnt,Cx/11',,, ('t=i'2'3'"')' l. ao)

                    bn x wiE.i- j]iil,,cb (n -- 1, 2, 3, •••) . )

3. Expansion formula for the stream functioll

   For smail fea Eqs. (9) can be solved by the method of successive approxi-

mations. The results are series expression in ha for the Cn's and c2t's, and it is

thus found that C.=ptO [(lea)'ihi] and c. :O [(ha)2"]. Also, we get from (10)

similar expressions for the B.'s and bn's. Inserting these values of the Bn's ancl

bn's into (6) and expanding tke modihed Bessel functions for small ler and further

rearranging the resulting terms with respect to the order in lea, we get the

expansion formula for di in the form:

                         ip =: ipe-P Ripi{-O(R2), (11)
with
           iirl.li.C:[,Hii/li4illi-t/i'-;)-J,i{.i9.g,".'ISiln--sO,:,-,)(,ma.;.//)],,.,,,l (iia)

where R==4ha, ri == r/a, ce=-T-2/(1--29), 9r- log (8/R)-r and r is Euler's constant.

In deriving the formula (11) it is sufficient to take into account only the

first three of the Cn's and c.'s respectively. It wil} readiiy be seen that the

corresponding formula given in the prevlous paper (1, Eq. (44)) is iacl<ing in

tke last term in the square bracl<ets in ipi. Tke cause of such a discrepaRcy
}les in the rather inadequate truncation of the'system of equations, corresponding

to the above equations (9), in the previous ana}ysis.

   It is expected that the present approximate expression (11) can represent

fairly accurately the fiow fieid around tlte cylinder for ler<<1 at suMciently

$mali values of R. In tkis expressien, <Po is a solution of the Sto!<es ec;uation
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A2gb=O, which gives however logarithmeic divergence in veiocity at great distances,

while the second term Ripi represents the correction arising from the linearized

inertia term in Eqs. (l). ip vanishes obviously for ri:-r:1 (i.e., at the surface of

the cylinder) and for O=-O (i.e., on the axia} streamiine). But the streamline

ip=•=:--O niay have one more branch given by

           ,,[ S- ri;i- i - z•;l-y-g•,Lz':!i]

            ww gl[gk'i"t,''l).(ttrww2z /:'.:l) t- c, th'2,.IOimg..;i-(-//Q•- -i-2) -riJ/1';1-] cos ti ==':' O• (12)

In fact, if we drop the last term in the second square brackets, we certainly

obtain the separated streamiine di= O embracing a vortex-pair even for very small

R, as described in the previous paper (1). However, it can be shown that the

full equation (22) does never have real root for all values of the Reynolds number

             .[crill,'13"'g'i'i'o],,•..i

                        e,rO
                               I: up to JeO
                         4                              II : lip to Ri
                              III: up to l?2 II
                              IV:up to 1{3
                              V: up to fe4 III
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R. Tltus, the lost term in the previous paper affects seriously the delicate flow

pattern immedlately behlnd the cylinder.

   The present writers have also extended the expansion (11) up to the fourth

order term (proportional to R`). The resuk is fairly complicated and wiil
not be given here. It may be added, however, that the separated streamline

di=O and hence a vortex-pair does not yet appear for small valttes of R as far

as the fourth order approximation is concerned. In Fig.1 the values of
[di/{(ra-1) sin fi}]r,==i. e-e are plotted against R fer each degree of approximation.

The zero point of this function is expected to give the critical Reynolds number

for the first appearance of a standing pair of vortices behind the cylinder. From

the curves for successive approximations qncl from tke nature of tke function,

it may be conjectured that the true values of [Åë/{(ri-1) sine}]r,#i,e..o lie near

a dotted-line curve in Fig. 1, and thus the value of the critical Reynolcl number

for the first appearance of a vortex-pair is supposed to be about 3. This point

wili be re-considered in tlie next section.

4. Flow patterm at R:'=mm4.0

   In She previous paper (1) tke fiow field at R:-k4.0 was also computed by

making use of another approximation in which the series for Lamb's potential

is truneated by finite terms but not expanded in R. The resulting fiow involved

a fairly large vortex-pair behind the cylinder. In view of the non-existence of

a stand!ng vortex-pair at suMcient}y small R as mentioned in the prececiing
section, however, it is deslrable to refine the previous calculation for R=4.0.

   We have started again from the simultaneous equations (9) for the Cn's and
cn's. We 1?ave first evaluated the functions ln-s(lea) Kn(lea), etc. for ha=:'1 (i.e.,

Rla-4.0) and tken we have so}ved the resulting linear algebraic equations for tke

Cn's and cn's. Inserting these value$ of the Cn's and c,,'s in (10), we have also

obtained tlae Bn's aiid bn's. With various constaRts tkus determined, Eqs. (6)

and C7) give respectively tke stream function and tlie complex velocity. Tke

simultaneo"s equations (9) are doubly infinite, and therefore in actual comp'uta-

tion we must truncate them adequately by finite terms. Tke calculatioR in the

previous papey <1) corresponds to taking the c.'s up to c,i. Here we have taken

the cn's up to cg. The values of the C.'s axxd c.'s are }isted in Table I, in which

are also given tlae vaiues obtained wken trtineate(l cs, c7, cfi and c.r, respectively.

It can, reaclily be seen that our cg-approxima{/ion represents a.lmos`t' co"vergent

result.

   The vorticity ckanges its si.q.n .ftt the separation point of {/ke streain}ine 4j-,,-e

on tke cylinder and this occur's at 0==-20.072'", 20.691"', 20.658", 20.659" aiicl 20.659"
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for tlte cs-, cG-, c7-, cs- and cg-approximation, respectively. On the other hand,

the polnt of intersection of the separated and the axial streamlines is found to

lie at x=1.2057a, 1.2051a, 1.2052a and 1.2052a, and y==O for the c6-, cr, cs- and

cg-approximation respectively. For the cs-approximation we cannot obtain the

value of tke said poiRt of intersection, because in this case the stream function

is very near to zero inside and near the separated streamline. Thus it is seen

that the fiow pattern immediately beklnd the cylinder is in general rather delicate.

         Table I. Values of the c,,'s and C.'s for each degree of approximation.

cg-approx. cs-approx. c7-approx. c6-approx.

'l lI. -l.5703051 I -1.5703051

i. 7.0777998 l 7.0777998
i• -6.9880077 I -6.9880077
I- 2.7411ss6 [ 2.74118si
I

I -5.5879330 -s.s878643
i 6.9155837 6.9105374
I ves.72sg14g I -s.s29s436

. 3.2956557 i
             'i- Ii

cs-approx.

      lCoic, Å~ 10 i'

c2Å~!o2 l

C3 Å~ 203

c4Å~10S I

cs Å~ 107

c6Å~109 I
      Ic7 Å~ 10ii l,

c, Å~ 10i3 I

eg Å~ 10i6 i

-1.s7o3osl ' 11""-1.s7o3osl

           I 7.0777998 i 7.0777998
           [-6.9880077 [ -6.9880077

 2.7411856 2.7411856
-5.5879335 I -5.5879335
 6.9156370 I 6.9156367
           [-5.7320823 I -5.7320529
 3.4008ssl I 3.3993972
           F-1.s14727g I -1.47332e3
           I
 5.153e823 i
           i

I

I -1.5703051

 7.0777997

-6.9880044

 2.7412258

-5.5821547

 6.6306723

                      ttt..t.t. ..t t.ttt. ..t. .t.t .. ....t...............tt..t. ... .... t ...t.tt tt .. ..t.t.t.t.....t..iiii.lili[l.11iliil171iii'i11i'I.lllliiiilii$1[l41iiL19iliiiii5g'111-iil•ill•iiii•' IPilliilili•i•i

       I li I•                    l-O.5977 i i, i  C, Å~ 10Sl         -IMI
...[?.?wX.i09L.III.Il:?.?.P... ...jl...........,..I... ....-.Å}... .I..... ..

   The flow pattern at R=-:=-'4.0 to the cg-approximation is skown in Fig. 2.

   Comparing Fig. 2 with Fig. 3 ln the previous paper (1), we find tliat a

standing pair of vortices given previously is too large in size, perhaps because

of $light inaccuracy of tlie previo"s calculat'ion. However, these two figures are

quite in goed agreement with each other in other domains of the fiow field and

this suggests that so far as the pressure distribution on the surface of the
cylincler, the totai clrag ancl etc. are concerned, the previous results are sufficieiitly

accurate.

   Now, observing the dletirnite asymmetry wiili respect to the ),--axis of the

over-all fiow pattern as shown in Fig. .9. ancl refiecting upon the accuracy of our
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cg-approximation, it may be concluded that a stancling vortex-pair is certainly

present at R:=':'4.0 on the basis of the Oseen approximation.

s

           Fig. 2. Calculated streamlines past a circular cylinder at R::=4.0.

    Since, however, the size of the vortex-pair in this case is fair!y small and

the fiuid is almbst at rest there, it is expected that a slight reduction of the

Reynolds number beloxrLr 4.0 will mcal<e the vortex-pair vanish immedlateiy. Based

upon this expectation ancl in view of the result shown in Fig. 1, we have further

computeci the flow pattern at R=-,'=3.2 to the c,J-approxii:nation, obtaiBing t'he value

0::=9.7320 for the point o'f separatioii of the streamline Åë•,•:O on the cylinder and

x----1.044a, y==•O for the point of intersection of the separated and the axial

streamlines. In this case we find a standing vortex-pair with extreinely small

size. Thus, it may be concluded that so far as we are concemed with the Oseen

approximation, the value of the critical Reynoids number for the first appearance

of a standing paiv of vortices behind a circulacr cylinder vLiill not differ too much

froni 3. I't; is o/f interesti 't/o conipare l'his valtie xvit.h an experinienl'al value of

5 fo'Em(.] rccenS]y by ,S. Ta.nec.la (.t-t).

   Il.a${11}?, iLv(". ,ghal'l jt'itt'e.t her{}, fiaF.; ,aii a.dclLf:nclv"n, R rc.vi:',;ecl I?.•--e.xli}ans'ioiii o'f 'Ihc

c:ur]'enl/ ,tiurnc{.ion .for t/he case oÅí (,he floxpv 1.)ast t: spliei'e, 'vvhi{/;k sho'Rlcl ('algie place

o'f Eq. (20) in the previous paper <1). It is given by
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     ip -•' -2- [( ri - i )- -23- ( 7i,-- - r:)

           t' is{3(-i- - ri) ww 2(-i- - rQi) 'i' [2(71.ii; - r2i)- 4(--,1-,,--1)] cos e}] sm2 0

         -,-O(R2). (13)
This result is due to H. Yosinobu (5). The flow field around a spkere has also

been discussed later by T. Pearcey and B. McHugh in a paper cited before (2)

aRd they have confirmed that a stationary vortex-ring behind the sphere does

not make its appearance at least up to R;=-IO.
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