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1. Introduction

It is well known that the steady flow of an incompressible viscous
fluid past a solid obstacle can be successfully dealt with on the basis
of Oseen’s linearized equations of motion. A number of investigations
have been carried out so far by several writers, but they were mainly
concerned with the discussion on the drag experienced by an obstacle.

It seems worth while, however, to discuss whether or not the actual
flow pattern around a body as observed in experiments can be obtained
theoretically from the solution of Oseen’s linearized equations of motion.
In a previous paper (1), we have therefore carried out detailed investi-
gations on the steady flows of an incompressible viscous fluid past
a sphere as well as past a circulur cylinder, by making use of the exact
analytical solutions of Oseen’s equations. The flow patterns around
these obstacles have been computed in detail, and the drags experienced
by these bodies have also been discussed, making special reference to
the pressure drag and the frictional drag separately. Thus, we have
arrived at several interesting and important results which are in good
agreement with the results of observation.

In this supplementary short note we intend to discuss the pressure dis-
tributions on the surface of a spherc and of a circular cylinder, each
placed in the steady flow of a viscous fluid at small Reynolds numbers.

PART I. CASE OF A SPHERE

2. Pressure distributions on the surface of a sphere

In the first place, the essential parts of Goldstein’s general solu-
tion (2) of Oseen’s equations in the case of a sphere, which are
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necessary for our investigation, will be briefly reproduced for reference.

We assume that at a great distance from an obstacle the fluid flows
with constant velocity U in the positive direction of the m-axis. If
we denote by w, v and w the rectangular components of the velocity of
perturbation due to the presence of the obstacle, Oseen’s linearized
equations of motion are given in the forms:

0 1/ o 0 Y
U— ) = ——|=—,=—,— |p + vV (u, v, w), 1)
aw(u,t,u) o <6‘m’6"y’ 62)13 vV {u, v, w) (1)

where p is the pressure, o the density of the fluid, » its kinematic
coefficient of viscosity and V* stands for 8°/0x" + 6°/8y* + 0°/82". The
fluid being assumed to be incompressible, the equation of continuity
is given by

8w , Ov | Ow ,

_— ;1\—“ + =0, (2)

O Oy Oz
The components of velocity of the perturbation which satisfy these
equations are given by

_ o4, 1ot
T Y

o¢ 18X
5 =T e e e g
LY oy 2k oy’ (3)
yo 08, 107

p= pU%S, (4)
provided that
Vig =0, (5)
and "
V"Z—~27rg—i=0, (6)

where we have put &k = U/2».
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Introducing spherical polar coordinates (r, €, w), the appropriate
general solution of equation (5) is expressed in the form:

n ()
¢ UZ An])n(-blf ’ (

where P,(u) denotes the Legendre function and A4,’s are constants of
integration. :

~X
~

On the other hand, the appropriate solution of equation (6) is given
by :
X = UC“EZBM /7n<£)]m</'°)7 <8>

M=)
where we have put & =1kr, p=cosf, and B,’s are constants of

integration. The function Z,,(£) is expressed in terms of the modified
Bessel function as:

2

We shall denote the components of the velocity of perturbation
along 7 increasing, € increasing and o increasing by v., v and v
respectively. Then, it is evident that v, = 0, and after some reductions,
we have

Xm(f) = (2777' + 1)& 1&m+é(§) (9)

v, = UZ (n -:-n lz)An Pl

ey
u nE N > 4 53
“é“é’ | Bm 277Z m—-l (f) I m(,U'> + /o‘*lm(f) I m(/»“)
m=0
m+ 1
+ n + 8 m+l(§) P1n(/~")}

- (10}

To = Usmﬁz n+:,P,z (;1,)

o0

-+ %Sin@ C“éz Bm{%};—l xm—](§> —Pm,(/ﬁ) + Zm(g) »Pm(/f-‘)

e
m=0

1
o2m + 3

Zmﬂ(g:) Pm/(fb)} ’

/

where accents denote differentiation with respect to .
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If the radius of the sphere be denoted by e, the boundary condi-
tions at the surface of the sphere are given by

v,= — Ucosl, ve= Usind an

at » = a, and these conditions yield the relations between the constants
of integration A, and B,,. Further, after some calculations, it is found
that the constants B, can be determined by solving the following
simultaneous equations :

o - 6 (n = 1) ]
{ (12)

/

ZB')7L7\‘7)1,7L<$0) =
meo 0 (h=2,3,",

where &, stands for ka. For the expressions of the functions Auw,»,
reference should be made to our previous paper (1) or to Goldstein’s
paper (2).*

We shall next proceed to the computation of the pressure distri-
butions along a meridian line on the surface of the sphere. Now, the
pressure p at any point in the fuid is given by (4), together with the
expression for ¢ as given by (7). Since, however, 8¢/0x— 0 as r—00,
" this p represents, as mentioned already, the pressure relative to that
at’ infinity.

Thus, if we denote the absolute pressure at any point in the
fluid by p anew and the corresponding pressure at infinity by Peos
we have

5‘</3

;

P D= oU (13)

In particular, if we denote the pressure on the surface of the sphere by
Ps, We have

P P 2 Q.‘é)
107 U(ax (14)

Equation (7) gives us immediately the following result :

0 + D4,
(%%)TEQ:MU _(LH:)—“‘/“PnOi)’{‘UE n+.‘<1_/*6)])n (Iu,)

n=0

But, this can be transformed into a more elegant form, if we make

* Tt is to be remarked here that the eXpressions for our functions Am,» can be
obtained from the corresponding Goldstein’s by interchanging the suffiXes m and =n.
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use of some recurrence formulae for the Legendre function as well as
of the following relations:

N (n+ 1A,

42
a

P, ()

oo

1 m
= -— p+ ECHSOE B, {mlmq(fo) Prn(p)
M=
R , + 1. ;
+ 14 lm(f()) Pm(,u,) + ‘ZZ’L + gffvn-l-l(é:o) J)m(fll)} y

(15)

=

2 f:: P </1')

a
n=]

=1 — _1- #Eoi ———]i-—— b "
= 1 2 e muOBm{QWZ . 1 '<m—~1 (fo) -P'm <ﬂ'>

-+ X'm(éo) Pm(,u') - X7n+1 <§0> -Pm, <f">} ’

2m + 3

which follow immediately from the boundary conditions (11) together
with (10).
We thus have

o

o¢ U m |
— U e P«Soz »m{w— o — ) 27—
(6‘96),.,,@ 2° mnoB [2m — 1 Pt (E0) Prues ()
) , m + 1,
-+ lm(f’O) ’Pm(/vla) +m}:m+1<$0>1)ﬂl+l(#’)} . (16)

Hence, bearing in mind that the function X.(§) is given by (9),
we have ultimately

— st e
%ﬁ; =9 — eu&oA/ 5%02 B, {771]'(,,,.-%(50) Proa ()

Me=()

+ (27?’1, + I)Km-&-%(f())Pm(f")

+ (777' + 1>K77L+§(§O)Pm+l<ﬂ')} 3 (17>

and this gives the exact general expression for the pressure coefficient
on the surface of the sphere.
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Making use of this exact expression, detailed numerical calculations
of the values of the pressure coefficient on the surface of the sphere
have becn carried out in two cases in which the Reynolds number of
the flow R = Ud/v, where d is the diameter of the sphere, is equal
to 1 and 2 respectively. The results are shown in Table I and Fig. 1.
It is found that there is & good qualitative agreement with experiment.

10
Ak
1 [,2
’Z? 8\

e
L

=

\\M
-4 \\

-6 E—
180° 150° i20° 90° 60" 30° g O

Yig. 1. Pressure distributions on a sphere,

TABLE L

0 k=1 R=2
0° —5.419 — 2.505
30° —5.070 —2.432
60° —3.738 —2.160
90° —0.863 —0.876
120° 3.325 1.800
150° 7.192 . 4.521
180° 8.770 5.642
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PART II. CASE OF A CIRCULAR CYLINDER

3. Pressure distributions on the surface of a circular cylinder

In the previous paper (1) we have obtained the exact analytical
solution of Oseen’s equations in two dimensions in the case of steady
flow of an Incompressible viscous fluid past » circular cylinder, by
developing similar analysis to Goldstein’s in the case of a sphere.
Only the essentials necessary for our present discussion will be given
here briefly for reference.

We assume that the fluid at infinity fows with constant velocity
U in the positive direction of the w-axis, and let » and » be the
rectangular components of the velocity of perturbation caused by
the presence of the body, which become vanishingly small at a great
distance from the body. Then, Oseen'’s linearized equations of motion
are given by

U2 () = — —1-<~6~ ; i)p + vV (u, v}, (18)
Oz o \0x’ 0y

where p, p and v have the same meanings as before, and V* stands
for the operator 8°/0a" + 0°/0y°.

The fluid being assumed to be incompressible, the cquation of conti-
nuity becomes

SR (19)

A general solution of these equations can be expressed in the form:

09 164 .
= — e
Y 0 + ok 0 ’ \t :
(20)
09 1 0%
v oy + 2k oy’ J
and
H
p= pU%, (21)
provided
and
VL — 27:%‘5 =0, (23)

where, as before, we have put k = U/2v.
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Introducing polar coodinates (r, 6), the appropriate general solution
of equation (22) is given by

N snf
¢ = UAQIOg’)' - UZ '4;;299“:;?‘“ s (24)

n=]

where A,’s are constants of integration.
Also, it is found that a general solution of equation (23) which is
appropriate to our problem is given by

1= UGI‘T“"‘“’OEOB,,JIM (k) cosm8 , (25)
Py
where K,, is the modified Bessel function and B,’s are constants of
integration.
Instead of using the rectangular components of velocity u, v, the
radial and circumferential components may conveniently be used. If
we denote them by v, and vy, We have, after some calculations,

L

- U 2 Aﬂwsn@ U‘ et "’“”E B, {K 1 (k) cosm

=0 m=q

+ 2K, (Fr) cos @ cosmO + K1 (Fr) cosmé’} ,

oo

6 . .
— UE Anﬁgﬁ u e’” oo "E B, {Km-l (k) sinm@
n=1

L= ()

+ 2K, (k) sin 6 cosmb — Kyas (br) sinmf} )

Denoting the radius of the circular cylinder by «, the boundary
condlitions to be satisfied at its surface are

vp= — Ucosl, wvy=Usin€ 27

at r = a, and these conditions give us immediately the relations between
the constants A4, and B,,. Further, it is found that B,’s can be
determined by the following simultancous equations :

4 (n=1),
Z]gm)\'m,nkém’ = (28)
m=o 0 (7’1,:2,3,"'),

where &;= kz and the functions A,,, are expressed in terms of the
modified Bessel functions I, and K, as follows:
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7‘)771,71(50) _ Im—-n(fo) Km—l (fo) + Im+7z(§0> K?)l+1 (fo)
+Im—~n+1(§0> Km(&ﬂ) + ]m-i-n—l(f'()) Km(f'o) . (29)

Now, by (21) and (24), the pressure at any point in the fluid is
given by

oo

p = pU"’E A,

=}

cos(n + 1)6

EESY
P

Obviously this represents the pressure relative to that at infinity, since
p—0 as r-—»>00. If, therefore, we use p anew to denote the absolute
pressure and also if we denote the corresponding pressure at infinity
by p., We have

eo

2 cos(n + 1)6’

n+1 <30>

Jo-
= =0

If, in particular, p, denotes the pressure on the surface of the

cylinder, we have
Pe _ ZAncos(n + 1)0' 31)

Tk 1

=0
Putting the expressions for v, and ve as given by (26) into the boundary
conditions (27), we readily have

oo

N 6 1, )
] 4B = cos — <60 V| By [ (k) cosmd

n=4 m=0

+ 9K, (ka) cos O cosmb + K. (ka) cosm@} R

6 y 1 pewo\ ,
A, S“;Z—Ll— = —ginb + 2-0“"“‘“02 B, {Km,1(7ca) sinm6
a

m=0

iDs

+ 9K, (ka) sin @ cosm8 — Kp.1 (ka) sinme} ,

and consequently

oo

Z A"COS('R + 1)9 =1— "}{CMC%QE B‘,,;{Km_j,(k(l) COS(WL - 1)0

Mm=0

+ 2K, (ka) cosmb + K.y (ka) cos(m + 1) 0} .

Thus, the pressure coefficient on the surface of the cylinder becomes
finally



18 8. Tomottka and T. Ao,

oo

p%—i _l;); =92 — %‘Gm o 02 B, {I{m—l (ka) cos(m—1)80
Zp b

m=0

+ 9K, (ha) cosmb + K1 (ka) cos(m+1) 0} ,{(32)

and this exact formula can conveniently be used to compute the pressure
distributions on the surface of the circular cylinder.

Numerical calculations have been carried out in two cases in which
the Reynolds number of the flow R = Ud/v, where d is the diameter
of the cylinder, is equal to 0.8 and 4 respectively. The results are
shown in Table IT and Fig. 2. In this figure, Thom's experimental
results (3) for & = 3.5 are also shown by small black circles.™

6
4

\
Y

N
g

o]
[
kS

] \
\\\, —
N
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-4
180° 150" 1200 90° 60" 30°g O

Fig. 2. Pressure distributions on a circular cylinder.

e

* ThonYs experiments were conducted in an oil whose kinematic coefficient of vis-
cosity was v == 0.4 cmn®/sec. The diameter d of the cylinder used by him was 0.318 cm
and the undisturbed velocity U of the stream was 4.4 cm/sec.
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TABLE IL

] k=038 R =
0’ — 2,924 — 0.834
30° — 3.028 - 1.021
60° — 2.824 — 1.401
90° - 1.416 — 1.158
120° 1.430 0.245
150° 4.448 2.194
180° 5.758 3.111
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4. Summary and conclusion

In this paper, the computations of the pressure distributions on
the surface of a sphere as well as on the surface of a circular cylinder
have been made, by making use of the exact analytical solutions of
Oseen’s linearized equations of motion for the steady flows of an in-
compressible viscous fluid past these obstacles.

For this purpose, we have first obtained the exact formula for the
pressure coefficient in each case, and then detailed numerical conmrputa-
tions have been made. Thus, it has been found that the calculated
pressure distributions are in good agreement with observation.

Comparing the results of the present paper with those in our pre-
vious paper (1), it may be concluded that, as we have expected, Oseen’s
linearized equations of motion are capable of representing satisfactorily
the steady flow of an incompressible viscous fluid past an obstacle,
provided that the Reynolds number of the flow is fairly small
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