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1. Introduction

   It is well known that tbi: steacly flow ot' an incempressible viscous

fiuid past a solid obstaele can be successfully dealt with on the basis

of Oseen's linearized equabiens ot' inotion. A number of investigations
have been carriecl out so faur by several xxrriters, btit they were mainly

eoncerned with the diseussion on the drag experieneed by an obstacle.
   It seems 'wortl} while, however, to Cliseuss wl}ether or not the actoal

fiow pattem arotmc} a bocly as observecl in experiments can be obtained
theoretieaily from the solution oÅí Osee}i's linearizecl equations oÅí motion.

In a previous paper (1), Nve have therefore earried out detaile'd investi-

gations on the steady flows of an 2ncompressible viseous fiuic4 past
a sphere as weli as past a circular eyiinder, by nialscing use oÅí the exaet

anaiytical sotntions oÅí Oseen's equations. rL{]he 'fiow lpatterms arouncl

these obstaeles have been compute{il in detail, and the drags experienced

by these bodies kave also been diseussecl, making speeial referenee to

the pressure drag allcl the frictional drag separately. Thris, we have
arrivecl at severa1 interestsing andi important results which .".re in goocl

agreement with the results of observation.
   In this supplemenSary short note we iittend. to diseuss the pressure c.lis-

tributions on the surface of a sphere and oÅí a cireular eylinder, eaeh
placed in the steady fiow of a viseous fluicl at snaail Reynolcls numbers.

                  ]?ART I. CAgE OF A 6iPIIEBE

2. Pressure distributiens on the surfaee of a sphere

   In the first piace, the essential parts oÅí Goldstein's general solu-

tion(2) of Oseen's equatioRs in t}ie case of a sphere, xvhich are



10 • S. Tomotik'ce ancl T. Aoi.
necessary for our investi.cration, ivill bv- briefiy reproclucecl for reference.

   'Si?V'e assume that at a srreat clistanee Åírom an obstaele the flui(a fioxx's

with coitstant veloeity ' U in the positive direetion oS' the x-axis. IÅí
we (ilenote by ze , v ancl v) the rectangulat' eomponents oÅí the velocity of

perturbation dtie to the presenee of the obstacle, Oseen's linearized

equatioRs of rnotion are given in the k"orms:

        Uziil.I,.(i`,", '")i nd -, (zii./.,2.jl;,y,8,.)p -i- yv'2(z`,v, w)., (i>

where p is the pressure, ,o the densltsr of tl]e fiuicl, v its I"inematic
coeffleient of vSscosity an{:i V2 stancls for 02/ax"`' + 62/o"gt2 + 02/aÅí2. The

fiuid being assumecl to be ineompressible, the equation ot' continuity

is given by
     e
          , aze on)v o2I: .                •• br.+i.52]+-Z-E. --O• • (2)

The compoiients oi' velocity oÅí the perturbation xvhich satis{"y these

equations ttre given by

                     z'e ==' - [.lill,9.S + l,)i;e gl71ix -Z' 1

                                             i                    .v`= -t21tiÅë'Sis &1, ? (3)

                     .==-{l.Igi2+i,ilii,gt') j

while tke pressure relative to t}]at at infinity is given by

                                  '                                 aÅë
                          p== ,oUx, (4>
                                 ox

provicled that

                           v2 Åë =: o, ( or >

and ".                        .az                       V-Z-2kbl.T=O, (6>
                  'where we have put k -nv U/2v.



         Press{tre .Distri6tttions on tlie Szc7f' aee of an Obstacle. Il

   In".rodueiBg slpherieal polar coor(linate$ (r, e, (ti), the approl)riate

general solntion of equation(•5) is exlpressed in the form: .

                             ca. fo -- UZ AnZllk,1"t2• (7>
                            nnto •
where -l)n(ss) denotes the I[jegendre f{mction ancl A.'s are constants otF

--mte.cr.r,ltlon.. i ' ' '   On tthe other hand, tl]e appropriate solmbion of equation (6) is given

                   x-dv--- ue"g :lllr B,, z,.(g)I).,(pa), (s)
                           7)tmeO
                                                       /t.
where we have pt}t 8-pm k7', pa = co$e, ancl B.'s are constants of
iittegration. The Åíunetion Z.(g) is expressed in terms of the modified
Bessei function [is :

                                  .1-                 Z.(se) -- (2en + 1) N/ l,i!}eK'm+g(g)• (9>

    'N?V'e shall (lenote the components of the velocity of :perturbation

aiong o• increasing, e inereasing ancl (o inereasing by v•r, ve ancl vto
respeetively. [rhen, it is evident thaS v. -- O , and after some reduetioRs.

we have

       co vr ----' UIE] ('Z ;,..l,)A'i .pn(pa)

       n-re

            od     - g. e•pgZ B,.(2.": lZ.-,(o p,.(pa) + paZ,.(e) P.(pa)

            Mm t}
                               + SZ. ++ SXm+i(g) -Z'",(ss)l ,

           co re -ny-- Usine2 ,.A.:, p.' (pa)

           7tan1 ,
                 co     + g, sineept6.Z.,Bm (2. i- i X.-](8) P.'(pa) + Z.(g) -p.,(pa)

                               - 2. 1+ 3Zm+i(g) P.'(itk)) , ,,

                          ,11/•               'where accents clenote differentiation with respeet to F,•

$
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   If' the radius of the sphere be denoted by a, the boundary eondi-
tions at the surface oÅí the sphere are given by

                   v. -bu -Ucose, ve == Usine (11)

at o• = a , and these eonditions yield the relations between the constantsi

of integration An and B. . B'urther, aftey some ealeulations, it is founcl

that the eonstants B. can be•determined by solving the Åíollowing
sirnultaneous equations :

                                            '              S] B,., x.,.(g,) k i'-- 6 (n =i)' (i g.)

              m-o k O (n == .9.,3,-),
where ge stands Åíor kct. For the expressions of the functions Nm,n,
ref'erenee shoulcl be made to our previous paper (l) or to Goldstein's
pape}• (2).*

   XVe•shall next proeeed to the eomputation of the pressure distri-

butioRs along a rneridian Iine on the surfaee oÅí the sphere. Now, the
pressurep at any point in khe fiukZ is given by (4),togethey with the
expre$sion for Åë as given by (7). Since, however, aÅë/ax->O as ?•-->oc,

tl}is p represents, as mentioned ah'eady, the pressure relative to that
at- infiniCy.

   rLIrhus, if we denote the absolute pressur'e at any point iR the
fiuid by p anew and the corresponcling pressure at infinity by p.,

                                   eÅë
                       p - .psc =: ,oUol. . (l3)

                                '
In partiqilar, if we deltote the pres$ure on the $utface of the sphere by

ps, we have

                       P;,l;Arm,ulil•lrr)co---3(1"i;il'33),..• (i4)

   E<lutxtion (7) gives us immediately the {'ollowing yesul't :

                                  t
                 ee co   (["iligil).... -nv -UZ ('Z {i..1,)A" Ls P.(sb) + UZ i,;i,(1 m ,L`2) J',Y(,L`) •

                ntto nrtl
                                           '                                              'But, this can be transfom]ed into a n]ore eJegant form, iÅí we make

   * It is to be remarked here t}iat tlie expressions for our Åíunetions Rm,n ean be
ebtained fron) the corresponding Goldstein's by interchanging the sufixes 7n and n.
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                                                     '           t•
use of some reeurrence formulae for the ILe.crendre Åíunetion as well as

of the Åíollowing relations: .

 oo   (oz + 1)An2 a"+2            Pn(pa)
n=to

               co
==

 -•- pa -+- -lle"}ejlili BvaI2."2: iX•.-i(8o) i'ma(pa)

              ensuO
                 + -` X.(8o) .l'.(sb) + t.',n. -Tti 13 Z7n+i(go) J'm(Fb)] ,

                                                          (15)
 oo
Z a4i iZ2 pn' (pa)

n. at]

            ve
==

 i - 'll-epagOIS Bm (2,. ind umi Z,.-.i(go) P.'(pa) '

            meEe
           . + Zon(ee) -Z'm(Fb) nt Ltm 1-i- ;., X7n.+i (go) -Z)m'(F`)l,

which follow immec.liwtely from the bounClary conclitions (ll) together

with (10).

   We thus have

                             '                  co([g.lllÅë),... == U mgt e"go]E] BmI.".mooS Ji X7n-i(go) P7n--x(pa)

                  mme
                  + z,,,(g,) •,p,.(pa) + 2"•lk ++ 1,.. x,...,(e,) -l?.,.,(pa)] . (16)

Henee, bearing in mincl 'that the function Z.(e) is given by (9),
we huve ultimately

       '                         ca   PSt :iilif-l.",ee =: 2 - eptgoN/ g.,1},,Z.tu,Bm (mJf7n-di(ee) Pon-i(pa)

        .' +(2m+1)K.+s(go) Pm(pa)
                                + ("z + 1)K7n+g(8o)Pm+i(pa)) , (l7)

and this gives the exa' ct geReral expression for the pressure eoeMcient

on the serf'ace of the sphere.

l
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   Making u$e of this exact expressiQn, detailecl numerical caleulations

of' the values of the pressure coeff}cien'5 on tl}e surface of the $pl}ere

have been etu'}'ie(l out in t"ro eases in which the Reynold$ number of

Åíhe fiow R -- Ucllv, where el is the diame'ter of 'the spl-iere, is equa!

to 1 ancl 2 respeetively. riV"he resul'ts are shown in Mable I ancl Ili'ig. 1.

It is found eLhat there is a g•ood quaii'eative agreement with experiment.
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         lso" isoe i2oO goo 6oo 3oo e oe
               Fig. 1. Pressure dlstrlbutions on a sphere.

                           TABLE I.

             o R=:1 l -R =2

'

'

 O.
 3oe
 6oe
 9oo
12oe
15oo
l8oo

- 5sl19
- 5.070
-3.738
- O.863
  3.325
  7.192
  8.770

I - 2.505
- 2.432
- 2.160
- O.876
  I.seo
  4.S21
  5.642



         Presszcre Distrib'tttions on tfte Sart"ace o7(' ctn Obsiaele.                                                            15

         ' IPART II. CAsE OF A cmcvSAIR eyrmx'DEp.

3. Pressure distributions en the sux'face of 3 cirrc"lar cyliRder •

  ,'In the previous paper (1) we haye obt'tLiRea t})e exact aitalytic'.al

solusion of' eseen's equations in two dimensiop-s ln t}]e ease oÅ}' f.teady

iflow oÅí an incoml?reg.sible viscous iEluid past a eireular cylincler, by

developing simila}' analysis to Gotclstein's in .'bhe case of` a sphere.

Oniy the essentials necessary for oi]r preg.ent disc"ssion wM be given

here briefiy 'for referenee. •
   'VVe assume that the fluid a't inflniey flows Kx'ith ("onstant veloei'tJr

U in the positive clirection oÅí the xi-t}xis, aytd let z,. and v be the

reetangular components of the velocit•y of perturbation ('ause([l. by
the presence ofi t-he body, which bec'ome vanish2ngly small at a great
distanee t'roni the body. [irhen, Oseen's linearizecl equae!on$ of iiiotion

aure given by .
                                                '            ubt51g,(2e,v) -nv - -l,;-(zil,i,,a-ay)p -t- vvL'(t`,v), • (is)

where p, p and v have tlie sanie meanings as before, an:l V2 stands
Åíor the operator 02/OpJ-" + 62/agy2.

   [l]he fluicl being assumecl to be incompressib!e, the equation of eon'ti-

nuity beeomes

                        ale 0v                        5.IE+iE7=O• . (lg)
                                               '
   A general solution of these e(;tuations ean l)e expressed in t}he form :

             ' '2e ==m[ll91i., -i- l,ill)"[II,l;.i(i-X'1 (2o)

                  v=m{[lf(li'iil,},gww,X' I '

                                O d!,                         p-- pU"xm"in, ` (L)l)
                                ooc                           'provided

                          v2Åë ==(, (22)
and

 v,,z - 2. 1,gin/ m- o, . (23)
                          '
where, as before, we have put k=: U/2v.

'



                                                     t

16 S. Tomotiha ancl T. Aoi
   Introducing polar coodinates (r, e), the appropriate general solution

of equation (22) is given by '
                                   ce                  Åë=: UAolog7• - UZ til!'L eO;'.,?e, (.o.4)

                                   nptI
        '
where An's are constants of integration.
   Also, i'ts• is Åíound that a general solution ot' equakion (23) whieh is

apps'opriate to our problem is gi'ven by

                             co                 z =: ueicr c{'s ez B.Kr. (k7•) eosme, (25)•
                            7)ZvaO
                                                                '
where K. is the modified Bessel function and B,.'s are constants of'

i-mtegl',ltlon. • '   Ins,tead of usin.cr t}ie reetangular componen'ts of velocity ?e, v, tbe•

radial tmd circumferential eomponents may conveniently be used. It"
we cleno'te thern by v. and r•o, we have, after son)e ealeulations,

                              co Nt•. h- - uS A,,e?.,S,.'i,e - -U4-ek'eese: B,. Il/f..-i(k?•) eosone >

         natO vnmo
                    + 2.l/<on(k7') cose eog7ne + .Z/Sr.,+i (k7•) cosme) ,

                                                             (261,3
,,- - uliil A.Si,n.gZ,e + -lil eic'c""OS .b).[i<,,-.,<iv) sinone (

         natl o)z mo
                    + 21/C.,(lcr) sine cosme - .l/<.+i (kr) sin7ne) .7

   Denocing 'the raclius of the eircuiar cylin(ler by a, ehe boun(l.%ry.

eon<'litions 'to be saeisfied at it•s sur.faee a.re

                   vr -- -Ueo$ e, i,g == Usine (.g7)

at o' -- a, and 'these c' onditions fgive us inimediately the relations between

the eonstunts A. and B.. Ft}rther, it is found that B.'s ean be-
cletermined by the following simultaneous equations :

                #.m,Bmxm,n(6o) = (i ((.'i llli S), l3,...), ("os>

where ge-- kfe ancl the func'bions X.,. are expressed in terms oÅí the-
modified Bessel Åíimction$ In and K. as Åíollows:
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       pt,n,n(ee) == J"t-n,(go) Km-i(go) + J,n+n(ge) K7n+i(}o)

                   +Ln-n+i(go) -KI,n(go) + J"n+n-i(go) K.t(ge) . (-9•9)

   INow, by (21) and (24), t}}e pressu}'e at an>r lpoint in t}ie fluicl is

given by
                            co                   p == ,o u2: A.COS(no;.S, 1)e. t

                           7z rco '
Obviously this represents the pre$sure i'elative to that at infinity, slnce

p->O as r-->oo. If, therefore, we use p anew to clenote tlie absolute
pressm'e ancl also if ive dcnote the corresponcling pressure at infinity

by p.., we have

                              ce                  Pix,li,;ttt. --.g.X,.,A.eOs(iz.,,.mlnd,1)e. (3o)

   IÅí, in particular, p, clenotes the pressure on the surface of the
cylindei', we have
                              oo         , t'...7uth-2•X,.,A.eOS(Z',...",i)e. • (,.,i)

Putting tl}e expressiQns fox' t,. and ve fts given by (2•6) into the bounc.lary

conditions (27), we readily have

 oo ' eeZ A. S}iti:.S,.n-,e = eose ---- S-ek"Ces OZ fS,.. (Is",,,-i(ka) eosmG

evqa nt"e                        + 2K".,(ka) cog. eco$me + K.+i(ka) cosme) ,

 oe , ca: A. S:i-.ri\2 .,. - sine -f- -SeK-""c'"eZ B,. Ik".-i(ka) sinme

nnaJ enzaeO                         -t- 2K.(ka) slne eosme ---- iZ/l.+i (ka) sinme) ,

and con$equently

Z A. eOS(na, Ii:, 1)e -- 1 - I}e""coseZ B. (K,.-i(ka) cos(m - 1)e

ntuo m"o                             '                       + 2K,. (ka) eosone + .Z/Sr.,.i(ka) eos(m + Oe) L

[I]hus, the pressure eoeeecient on the surfaee of the eylinder becomes

.



18 S. Tomotitha and T. Aoi.
                       co,,e/.]..7uP-2me " 2 rm Seimcofi'el.Il,..,B. (K'..-i(ica) cos(m-i)e

                        + 2K. (ka) coq. me + K',..i (ka) cos (?n + 1) el , (39.)

and. this exaet fom]ula can conveniently be used to compiite the pi'essure

clistributions on t}ie surface of the cireRlar cylin(/ler.

   Nun]erieal ealculations have been earrie{.l out in two cases ita xvi}icl}

the IIIeynold.s number ot' the fiow .le -- Ud/v, where d is the diameter

oÅí the eylind.er, is equal to O.8 and 4 respeetively. "Xhe results are
shown in Table II aAd ]Fig. 2. In th!s fignre, [i]hom'$ expeniniental

results(3) for R =: 3.o' are aiso shown by small black eireles.*

 up:
ny

P,

9S

6

R=O.8, .

p.cr,42o-2-4

R=4

e

l

          Isoe lsoe l2o? goe 6o" 3oee oe
             Fig. 2. IPressure distributions on a cireular eylinder.

   * Thom's experiments xs'ere eonductedi in .an oil whose I;inematic coellicient oi' vis-

cosity was v = O.4em2/sec. The diameter d of the cylinder usedi by him was O.318cu)
and the unaisturbed velocit.v U oÅí the stream was 4.4cm/sec.
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0

I

R = e.8 l
l R=4

 o:
 30:
 6oa
 9oo
l.90:

lsoe
18os

- 2.924
- 3.028
- 2.824
- l.4!6
  l.430
  4.448
  5.758

- O.834
- 1.021
- !AOI
- 1.158
  O.24o-

  2.l94
  3.111

1

4. Summary and cenclusien
    In this paper, the computations of the pressure distyibutions on
the stn'face of a sphere as weli as olt the surf'aee of a eireular cylindeti

have been niacle, by mal<ing use of the exact analytical solutions of
Oseen's linearizecl equations of motion Åíor the steacly fiows of an in-

compressible viseous fluicl past these obstaeles.

   il3"or tkis purpose, xxre have fu'st obtaine(1 the exaet formula Åíor the

pressure coefficient in eaeh case, and then cletailed numerical con]puta-

tions lmve been n]ade. [I]hii,g, it has been fo{in61 that the calcLiiatecl

pressure cllstributions are in goocl agreement with obs ervation.

   Comparins,' the results oÅí the present paper xvith those in om' pre-

vious paper (1), it may.be conclucled thaS, as xve have expected, Oseen's

linearizecl equations of' motion are eapable of representing satisfaetorily

the steady gow oÅí an incompressibie viscotis fiui(l past an ob$tacle,
provided that the Reyrtolds number o'Åí' the fiow is fairly srriali.
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