776 research outputs found

    LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development

    Get PDF
    Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation

    Synthesis and Structure-Activity Relationships of Pyridoxal-6-arylazo-5'-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists.

    Get PDF
    Novel analogs of the P2 receptor antagonist pyridoxal-5'-phosphate-6-phenylazo-2',4'-disulfonate (PPADS) were synthesized. Modifications were made through functional group substitution on the sulfophenyl ring and at the phosphate moiety through the inclusion of phosphonates, demonstrating that a phosphate linkage is not required for P2 receptor antagonism. Substituted 6-phenylazo and 6-naphthylazo derivatives were also evaluated. Among the 6-phenylazo derivatives, 5'-methyl, ethyl, propyl, vinyl, and allyl phosphonates were included. The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes. Competitive binding assay at human P2X(1) receptors in differentiated HL-60 cell membranes was carried out by using [(35)S]ATP-?-S. A 2'-chloro-5'-sulfo analog of PPADS (C(14)H(12)O(9)N(3)ClPSNa), a vinyl phosphonate derivative (C(15)H(12)O(11)N(3)PS(2)Na(3)), and a naphthylazo derivative (C(18)H(14)O(12)N(3)PS(2)Na(2)), were particularly potent in binding to human P2X(1) receptors. The potencies of phosphate derivatives at P2Y(1) receptors were generally similar to PPADS itself, except for the p-carboxyphenylazo phosphate derivative C(15)H(13)O(8)N(3)PNa and its m-chloro analog C(15)H(12)O(8)N(3)ClPNa, which were selective for P2X vs. P2Y(1) receptors. C(15)H(12)O(8)N(3)ClPNa was very potent at rat P2X(2) receptors with an IC(50) value of 0.82 ?M. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5-yl]methylphosphonic acid (C(14)H(12)-O(8)N(3)ClPSNa) showed high potency at P2Y(1) receptors with an IC(50) of 7.23 ?M. The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 ?M. An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors

    A comparison of calcium-activated potassium channel currents in cell- attached and excised patches

    Get PDF
    Single channel currents from Ca-activated K channels were recorded from cell-attached patches, which were then excised from 1321N1 human astrocytoma cells. Cells were depolarized with K (110 mM) so that the membrane potential was known in both patch configurations, and the Ca ionophore A23187 or ionomycin (20-100 microM) was used to equilibrate intracellular and extracellular [Ca] (0.3 or 1 microM). Measurements of intracellular [Ca] with the fluorescent Ca indicator quin2 verified that [Ca] equilibration apparently occurred in our experiments. Under these conditions, where both membrane potential and intracellular [Ca] were known, we found that the dependence of the channel percent open time on membrane potential and [Ca] was similar in both the cell- attached and excised patch configuration for several minutes after excision. Current-voltage relations were also similar, and autocorrelation functions constructed from the single channel currents revealed no obvious change in channel gating upon patch excision. These findings suggest that the results of studies that use excised membrane patches can be extrapolated to the K-depolarized cell-attached configuration, and that the relation between [Ca] and channel activity can be used to obtain a quantitative measure of [Ca] near the membrane intracellular surface

    UDP-glucose promotes neutrophil recruitment in the lung

    Get PDF
    In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y 14 receptors (P2Y 14 R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose levels are abnormally elevated in lung secretions from patients with cystic fibrosis (CF) as well as in a mouse model of CF-like disease, the βENaC transgenic (Tg) mouse. Instillation of UDP-glucose into wild-type mouse tracheas resulted in enhanced neutrophil lung recruitment, and this effect was nearly abolished when UDP-glucose was co-instilled with the P2Y 14 R antagonist PPTN [4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl-2-naphthoic acid]. Importantly, administration of PPTN to βENaC-Tg mice reduced neutrophil lung inflammation. These results suggest that UDP-glucose released into the airways acts as a local mediator of neutrophil inflammation

    A Guanine Nucleotide-independent Inwardly Rectifying Cation Permeability Is Associated with P2Y 1 Receptor Expression in Xenopus Oocytes

    Get PDF
    The functional properties of the G protein-coupled P2Y1 receptor were investigated in Xenopus oocytes. Incubation of oocytes expressing either the human or turkey P2Y1 receptor with adenine nucleotide agonists resulted in an increase in Cl- current and activation of a novel cation current with an inwardly rectifying current-voltage relationship. Activation of either the human P2Y2 (P2U-purinergic) or M1 muscarinic receptor expressed in oocytes resulted in an increase in Cl- current similar to that observed in P2Y1 receptor-expressing oocytes but had no effect on cation current. P2 receptor agonists stimulated both the cation current and Cl- current in P2Y1 receptor-expressing oocytes with EC50 values and an order of potency (2-methylthioadenosine diphosphate > 2-methylthioadenosine triphosphate (2MeSATP) > ATP > UTP) that were similar to those previously observed for activation of phospholipase C in 1321N1 human astrocytoma cells stably expressing the human or turkey P2Y1 receptor. The P2Y receptor antagonists suramin and pyridoxal phosphate 6-azophenyl-2'-4'-disulfonic acid both shifted to the right the concentration-response relationship for 2MeSATP for stimulation of oocyte currents. Although injection of oocytes with either GDPbetaS (guanyl-5'-yl thiophosphate) or GTPgammaS (guanosine 5'-3-O-(thio)triphosphate) resulted in loss of adenine nucleotide-promoted Cl- channel activation, neither guanine nucleotide altered the 2MeSATP-stimulated cation current. These data are consistent with the view that activation of the novel cation current by the P2Y1 receptor does not involve a G protein. Tail current analysis of the novel P2Y1 receptor-associated cation conductance revealed that the open channel current-voltage relationship was outwardly rectifying with a reversal potential of -38 mV for the turkey P2Y1 receptor and -36 mV for the human P2Y1 receptor. Replacement of Na+ with K+ ions in the bathing solution produced a shift in reversal potential to near zero mV, but significant outward rectification remained. The cation current was not permeable to either Ca2+ or Ba2+ and exhibited steady-state inactivation at holding potentials below -60 mV. These results indicate that the P2Y1 receptor exhibits both metabotropic properties and a novel G protein-independent ionotropic response when expressed in Xenopus oocytes

    HUNK phosphorylates EGFR to regulate breast cancer metastasis

    Get PDF
    Epidermal growth factor receptor (EGFR) is commonly over-expressed in metastatic breast cancer yet metastatic breast cancer is generally resistant to anti-EGFR therapies, and the mechanism for resistance to EGFR inhibitors in this setting is not fully understood. Hormonally up-regulated neu-associated kinase (HUNK) kinase is up-regulated in aggressive breast cancers and is thought to play a role in breast cancer metastasis. However, no studies have been conducted to examine a relationship between EGFR and HUNK in breast cancer metastasis. We performed a kinase substrate screen and identified that EGFR is phosphorylated by HUNK. Our studies show that HUNK phosphorylates EGFR at T654, enhancing receptor stability and downstream signaling. We found that increased phosphorylation of T654 EGFR correlates with increased epithelial to mesenchymal, migration and invasion, and metastasis. In addition, we found that HUNK expression correlates with overall survival and distant metastasis free survival. This study shows that HUNK directly phosphorylates EGFR at T654 to promote metastasis and is the first study to show that the phosphorylation of this site in EGFR regulates metastasis

    Child/Adolescent Anxiety Multimodal Study (CAMS): rationale, design, and methods

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To present the design, methods, and rationale of the Child/Adolescent Anxiety Multimodal Study (CAMS), a recently completed federally-funded, multi-site, randomized placebo-controlled trial that examined the relative efficacy of cognitive-behavior therapy (CBT), sertraline (SRT), and their combination (COMB) against pill placebo (PBO) for the treatment of separation anxiety disorder (SAD), generalized anxiety disorder (GAD) and social phobia (SoP) in children and adolescents.</p> <p>Methods</p> <p>Following a brief review of the acute outcomes of the CAMS trial, as well as the psychosocial and pharmacologic treatment literature for pediatric anxiety disorders, the design and methods of the CAMS trial are described.</p> <p>Results</p> <p>CAMS was a six-year, six-site, randomized controlled trial. Four hundred eighty-eight (N = 488) children and adolescents (ages 7-17 years) with DSM-IV-TR diagnoses of SAD, GAD, or SoP were randomly assigned to one of four treatment conditions: CBT, SRT, COMB, or PBO. Assessments of anxiety symptoms, safety, and functional outcomes, as well as putative mediators and moderators of treatment response were completed in a multi-measure, multi-informant fashion. Manual-based therapies, trained clinicians and independent evaluators were used to ensure treatment and assessment fidelity. A multi-layered administrative structure with representation from all sites facilitated cross-site coordination of the entire trial, study protocols and quality assurance.</p> <p>Conclusions</p> <p>CAMS offers a model for clinical trials methods applicable to psychosocial and psychopharmacological comparative treatment trials by using state-of-the-art methods and rigorous cross-site quality controls. CAMS also provided a large-scale examination of the relative and combined efficacy and safety of the best evidenced-based psychosocial (CBT) and pharmacologic (SSRI) treatments to date for the most commonly occurring pediatric anxiety disorders. Primary and secondary results of CAMS will hold important implications for informing practice-relevant decisions regarding the initial treatment of youth with anxiety disorders.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00052078.</p

    Systematically Variable Planktonic Carbon Metabolism Along a Land-To-Lake Gradient in a Great Lakes Coastal Zone

    Get PDF
    During the summers of 2002–2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L−1 day−1, respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and −33 ± 15 µg C L−1day−1, respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles

    Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor

    Get PDF
    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013, 22, 101−113; Ahn, K. H. et al. Proteins 2013, 81, 1304–1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists
    • …
    corecore