638 research outputs found
Photodesorption of CO ice
At the high densities and low temperatures found in star forming regions, all
molecules other than H2 should stick on dust grains on timescales shorter than
the cloud lifetimes. Yet these clouds are detected in the millimeter lines of
gaseous CO. At these temperatures, thermal desorption is negligible and hence a
non-thermal desorption mechanism is necessary to maintain molecules in the gas
phase. Here, the first laboratory study of the photodesorption of pure CO ice
under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO
molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5
larger than previously estimated and is comparable to estimates of other
non-thermal desorption rates. The experiments constrains the mechanism to a
single photon desorption process of ice surface molecules. The measured
efficiency of this process shows that the role of CO photodesorption in
preventing total removal of molecules in the gas has been underestimated.Comment: 5 pages, 4 figures, accepted by ApJ
Atypical presentation of angiosarcoma of the scalp in the setting of Human Immunodeficiency Virus (HIV)
<p>Abstract</p> <p>Background</p> <p>Angiosarcoma of the head and neck is an uncommon, aggressive malignant entity most commonly found in elderly Caucasian males. We present a case in a young black female with co-existing HIV. The atypical gender, age and race of the patient reflect the unusual clinical presentation of this case of angiosarcoma, attributable to the patient's HIV status.</p> <p>Case presentation</p> <p>A 22 year old patient presented with a large unresectable lesion over the occiput with surrounding ulceration, satellite lesions and associated lymphadenopathy. She is HIV-infected with a CD4 count of 360 cells/μl. She was not on antiretroviral treatment based on South African treatment guidelines advocating antiretroviral treatment when the CD4 count is below 200 cells/μl, in the absence of other AIDS-defining illnesses.</p> <p>The patient was treated with a course of ifosfamide and anthracyline based chemotherapy. Disease progression was noted on chemotherapy and she was subsequently palliated with a course of radiotherapy. She had a satisfactory response with an improvement in local symptoms. She is currently receiving symptomatic care.</p> <p>Conclusions</p> <p>South Africa is at the epicenter of the HIV epidemic. Consequently, the management of patients in the field of oncology in our clinical practice is often burdened with malignancies manifesting with an atypical disease presentation and clinical course.</p
Rotation-tunneling spectrum and astrochemical modeling of dimethylamine, CHNHCH, and searches for it in space
Methylamine has been the only simple alkylamine detected in the interstellar
medium for a long time. With the recent secure and tentative detections of
vinylamine and ethylamine, respectively, dimethylamine has become a promising
target for searches in space. Its rotational spectrum, however, has been known
only up to 45 GHz until now. Here we investigate the rotation-tunneling
spectrum of dimethylamine in selected regions between 76 and 1091 GHz using
three different spectrometers in order to facilitate its detection in space.
The quantum number range is extended to and , yielding an
extensive set of accurate spectroscopic parameters. To search for
dimethylamine, we refer to the spectral line survey ReMoCA carried out with the
Atacama Large Millimeter/submillimeter Array toward the high-mass star-forming
region Sagittarius B2(N) and a spectral line survey of the molecular cloud
G+0.6930.027 employing the IRAM 30 m and Yebes 40 m radio telescopes. We
report nondetections of dimethylamine toward the hot molecular cores Sgr
B2(N1S) and Sgr B2(N2b) as well as G+0.6930.027 which imply that
dimethylamine is at least 14, 4.5 and 39 times less abundant than methylamine
toward these sources, respectively. The observational results are compared to
computational results from a gas-grain astrochemical model. The modeled
methylamine to dimethylamine ratios are compatible with the observational
ratios. However, the model produces too much ethylamine compared with
methylamine which could mean that the already fairly low levels of
dimethylamine in the models may also be too high.Comment: Mon. Not. R. Astron. Soc., accepted. 33 pages including tables,
figures, and appendi
Kilometer-scale climate models: Prospects and challenges
Currently major efforts are underway toward refining the horizontal resolution (or grid spacing) of climate models to about 1 km, using both global and regional climate models (GCMs and RCMs). Several groups have succeeded in conducting kilometer-scale multiweek GCM simulations and decadelong continental-scale RCM simulations. There is the well-founded hope that this increase in resolution represents a quantum jump in climate modeling, as it enables replacing the parameterization of moist convection by an explicit treatment. It is expected that this will improve the simulation of the water cycle and extreme events and reduce uncertainties in climate change projections. While kilometer-scale resolution is commonly employed in limited-area numerical weather prediction, enabling it on global scales for extended climate simulations requires a concerted effort. In this paper, we exploit an RCM that runs entirely on graphics processing units (GPUs) and show examples that highlight the prospects of this approach. A particular challenge addressed in this paper relates to the growth in output volumes. It is argued that the data avalanche of high-resolution simulations will make it impractical or impossible to store the data. Rather, repeating the simulation and conducting online analysis will become more efficient. A prototype of this methodology is presented. It makes use of a bit-reproducible model version that ensures reproducible simulations across hardware architectures, in conjunction with a data virtualization layer as a common interface for output analyses. An assessment of the potential of these novel approaches will be provided
Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: a ubiquitous tracer of molecular gas
We discuss the detection of absorption by interstellar hydrogen fluoride (HF)
along the sight line to the submillimeter continuum sources W49N and W51. We
have used Herschel's HIFI instrument in dual beam switch mode to observe the
1232.4762 GHz J = 1 - 0 HF transition in the upper sideband of the band 5a
receiver. We detected foreground absorption by HF toward both sources over a
wide range of velocities. Optically thin absorption components were detected on
both sight lines, allowing us to measure - as opposed to obtain a lower limit
on - the column density of HF for the first time. As in previous observations
of HF toward the source G10.6-0.4, the derived HF column density is typically
comparable to that of water vapor, even though the elemental abundance of
oxygen is greater than that of fluorine by four orders of magnitude. We used
the rather uncertain N(CH)-N(H2) relationship derived previously toward diffuse
molecular clouds to infer the molecular hydrogen column density in the clouds
exhibiting HF absorption. Within the uncertainties, we find that the abundance
of HF with respect to H2 is consistent with the theoretical prediction that HF
is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen
fluoride has the potential to become an excellent tracer of molecular hydrogen,
and provides a sensitive probe of clouds of small H2 column density. Indeed,
the observations of hydrogen fluoride reported here reveal the presence of a
low column density diffuse molecular cloud along the W51 sight line, at an LSR
velocity of ~ 24kms-1, that had not been identified in molecular absorption
line studies prior to the launch of Herschel.Comment: 4 pages, 3 figures, A&A Letter special issue, accepted on 07/13/201
Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C)
We report the detection of strong absorption by interstellar hydrogen
fluoride along the sight-line to the submillimeter continuum source G10.6-0.4
(W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to
observe the 1232.4763 GHz J=1-0 HF transition in the upper sideband of the Band
5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at
LSR velocities in the range -10 to -3 km/s, accompanied by strong absorption by
foreground material at LSR velocities in the range 15 to 50 km/s. The spectrum
is similar to that of the 1113.3430 GHz 1(11)-0(00) transition of para-water,
although at some frequencies the HF (hydrogen fluoride) optical depth clearly
exceeds that of para-H2O. The optically-thick HF absorption that we have
observed places a conservative lower limit of 1.6E+14 cm-2 on the HF column
density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance,
6E-9 relative to hydrogen nuclei, implies that hydrogen fluoride accounts for
between ~ 30 and 100% of the fluorine nuclei in the gas phase along this
sight-line. This observation corroborates theoretical predictions that -
because the unique thermochemistry of fluorine permits the exothermic reaction
of F atoms with molecular hydrogen - HF will be the dominant reservoir of
interstellar fluorine under a wide range of conditions.Comment: Accepted for publication in Astronomy and Astrophysics (Herschel
special issue). This revised version corrects a typographic error in the HTML
abstract, in which the lower limit on the HF abundance (should be 6E-9) was
previously misstated. The abstract in the PDF version is correct and the
latter has not been modifie
Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4
We report the detection of absorption lines by the reactive ions OH+, H2O+
and H3O+ along the line of sight to the submillimeter continuum source
G10.60.4 (W31C). We used the Herschel HIFI instrument in dual beam switch
mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+
at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep
absorption over a broad velocity range that originates in the interstellar
matter along the line of sight to G10.60.4 as well as in the molecular gas
directly associated with that source. The OH+ spectrum reaches saturation over
most velocities corresponding to the foreground gas, while the opacity of the
H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line
shows only weak absorption. For LSR velocities between 7 and 50 kms we
estimate total column densities of (OH+) cm,
(H2O+) cm and (H3O+) cm. These detections confirm the role of O and OH in
initiating the oxygen chemistry in diffuse molecular gas and strengthen our
understanding of the gas phase production of water. The high ratio of the OH+
by the H2O+ column density implies that these species predominantly trace
low-density gas with a small fraction of hydrogen in molecular form
Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)
The HIFI instrument on board the Herschel Space Observatory has been used to
observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4
in order to improve our understanding of the interstellar chemistry of
nitrogen. We report observations of absorption in NH N=1-0, J=2-1 and ortho-NH2
1_1,1-0_0,0. We also observed ortho-NH3 1_0-0_0, and 2_0-1_0, para-NH3 2_1-1_1,
and searched unsuccessfully for NH+. All detections show emission and
absorption associated directly with the hot-core source itself as well as
absorption by foreground material over a wide range of velocities. All spectra
show similar, non-saturated, absorption features, which we attribute to diffuse
molecular gas. Total column densities over the velocity range 11-54 km/s are
estimated. The similar profiles suggest fairly uniform abundances relative to
hydrogen, approximately 6*10^-9, 3*10^-9, and 3*10^-9 for NH, NH2, and NH3,
respectively. These abundances are discussed with reference to models of
gas-phase and surface chemistry.Comment: 5 pages, 3 figures, 2 online pages with 2 figures. Accepted for
publication in A&A July 6 (Herschel/HIFI special issue
- …