1,910 research outputs found
Astrin regulates Aurora-A localization
Alterations in the expression and activity of the centrosomal kinase, Aurora-A/STK15, affect genomic stability, disrupt the fidelity of centrosome duplication, and induce cellular transformation. A mitotic spindle-associated protein, astrin/DEEPEST, was identified as an Aurora-A interacting protein by a two-hybrid screen. Astrin and Aurora-A co-express at mitosis and co-localize to mitotic spindles. RNAi-mediated depletion of astrin abolishes the localization of Aurora-A on mitotic spindles and leads to a moderate mitotic cell cycle delay, which resembles the mitotic arrest phenotypes in siAurora-A treated cells. However, depletion of Aurora-A does not affect astrin localization, and co-depletion of both astrin and Aurora-A causes a mitotic arrest phenotype similar to depletion of siAurora-A alone. These results suggest that astrin acts upstream of Aurora-A to regulate its mitotic spindle localization
Examination of Ligand-Dependent Coactivator Recruitment by Peroxisome Proliferator-Activated Receptor-α (PPARα)
The ligand-dependent recruitment of coactivators to peroxisome proliferator-activated receptor-α (PPARα) was examined. PPAR-binding protein (PBP), PPARγ coactivator-1α (PGC-1α), steroid receptor coactivator-1 (SRC-1), and CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2) affected PPARα activity in the presence of Wy-14,643. The effects on PPARα activity in light of increased or decreased expression of these coactivators were qualitatively different depending on the ligand examined. Diminished expression of PGC-1α, SRC-1, or PBP by RNAi plasmids affected natural or synthetic agonist activity whereas only Wy-14,643 was affected by decreased PGC-1α. The interaction of PPARα with an LXXLL-containing peptide library showed ligand-specific patterns, indicative of differences in conformational change. The association of coactivators to PPARα occurs predominantly via the carboxyl-terminus and mutating (456)LHPLL to (456)LHPAA resulted in a dominant-negative construct. This research confirms that coactivator recruitment to PPARα is ligand-dependent and that selective receptor modulators (SRMs) of this important protein are likely
Resonant X-Ray Scattering on the M-Edge Spectra from Triple-k Structure Phase in U_{0.75}Np_{0.25}O_{2} and UO_{2}
We derive an expression for the scattering amplitude of resonant x-ray
scattering under the assumption that the Hamiltonian describing the
intermediate state preserves spherical symmetry. On the basis of this
expression, we demonstrate that the energy profile of the RXS spectra expected
near U and Np M_4 edges from the triple-k antiferromagnetic ordering phase in
UO_{2} and U_{0.75}Np_{0.25}O_{2} agree well with those from the experiments.
We demonstrate that the spectra in the \sigma-\sigma' and \sigma-\pi' channels
exhibit quadrupole and dipole natures, respectively.Comment: 3 pages, 3 figures, to be published in J. Phys. Soc. Jpn. Supp
Agent-Based Modeling of Intracellular Transport
We develop an agent-based model of the motion and pattern formation of
vesicles. These intracellular particles can be found in four different modes of
(undirected and directed) motion and can fuse with other vesicles. While the
size of vesicles follows a log-normal distribution that changes over time due
to fusion processes, their spatial distribution gives rise to distinct
patterns. Their occurrence depends on the concentration of proteins which are
synthesized based on the transcriptional activities of some genes. Hence,
differences in these spatio-temporal vesicle patterns allow indirect
conclusions about the (unknown) impact of these genes.
By means of agent-based computer simulations we are able to reproduce such
patterns on real temporal and spatial scales. Our modeling approach is based on
Brownian agents with an internal degree of freedom, , that represents
the different modes of motion. Conditions inside the cell are modeled by an
effective potential that differs for agents dependent on their value .
Agent's motion in this effective potential is modeled by an overdampted
Langevin equation, changes of are modeled as stochastic transitions
with values obtained from experiments, and fusion events are modeled as
space-dependent stochastic transitions. Our results for the spatio-temporal
vesicle patterns can be used for a statistical comparison with experiments. We
also derive hypotheses of how the silencing of some genes may affect the
intracellular transport, and point to generalizations of the model
Hyperinsulinemia in African-American Adolescents Compared With Their American White Peers Despite Similar Insulin Sensitivity: A reflection of upregulated β-cell function?
OBJECTIVE—African-American (AA) children are hyperinsulinemic and insulin resistant compared with American white (AW) children. Previously, we demonstrated that insulin secretion relative to insulin sensitivity was ∼75% higher in AA compared with AW children, suggesting that hyperinsulinemia in AA children is not merely a compensatory response to lower insulin sensitivity. The aim of the present investigation was to assess whether glucose-stimulated insulin response is higher in AA versus AW adolescents who have comparable in vivo insulin sensitivity
Obstructive sleep apnoea in obese adolescents and cardiometabolic risk markers
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: In paediatric patients, obstructive sleep apnoea is associated with adiposity, especially visceral adiposity. In adults, obstructive sleep apnoea is also associated with a higher prevalence of cardiovascular disease and type 2 diabetes. There are limited and conflicting paediatric studies examining the association between obstructive sleep apnoea and biomarkers of risk for cardiovascular disease and type 2 diabetes in youth.
WHAT THIS STUDY ADDS: Obstructive sleep apnoea is linked with greater cardiometabolic risk markers in obese adolescents. Fasting insulin and homeostasis model assessment-insulin resistance may be especially linked with obstructive sleep apnoea among obese male Hispanic adolescents. The relationship between obstructive sleep apnoea and cardiometabolic abnormalities in obese adolescents should be considered when evaluating patients found to have obstructive sleep apnoea.
BACKGROUND: Paediatric studies examining the association between obstructive sleep apnoea (OSA) and insulin sensitivity/cardiometabolic risk are limited and conflicting.
OBJECTIVE: This study aims to determine if cardiometabolic risk markers are increased among obese youth with obstructive sleep apnoea as compared with their equally obese peers without OSA.
METHODS: We performed a retrospective analysis of 96 patients (age 14.2 ± 1.4 years) who underwent polysomnography for suspected OSA. Fasting lipids, glucose, insulin and haemoglobin A1 c (HbA1 c) were performed as part of routine clinical evaluation. Patients were categorized into two groups by degree of OSA as measured by the apnoea-hypopnoea index (AHI): none or mild OSA (AHI < 5) and moderate or severe OSA (AHI ≥ 5).
RESULTS: Despite the similar degrees of obesity, patients with moderate or severe OSA had higher fasting insulin (P = 0.037) and homeostasis model assessment-insulin resistance (HOMA-IR [P = 0.0497]) as compared with those with mild or no OSA. After controlling for body mass index, there was a positive association between the AHI and log HOMA-IR (P = 0.005). There was a positive relationship between arousals plus awakenings during the polysomnography and fasting triglycerides.
CONCLUSIONS: OSA is linked with greater cardiometabolic risk markers in obese youth
Recommended from our members
Short range order and topology of binary Ge-S glasses
Short range order and topology of GexS100-x glasses over a broad composition range (20 ≤ x ≤ 42 in at%) was investigated by neutron diffraction, X-ray diffraction, and Ge K-edge extended X-ray absorption fine structure (EXAFS) measurements. The experimental data sets were fitted simultaneously in the framework of the reverse Monte Carlo simulation method. It was found that both constituents (Ge and S) satisfy the Mott-rule in all investigated glasses: Ge and S atoms have 4 and 2 neighbours, respectively. The structure of these glasses can be described with the chemically ordered network model: Ge-S bonds are preferred; S-S bonds are present only in S-rich glasses. Dedicated simulations showed that Ge-Ge bonds are necessary in Ge-rich glasses. Connections between Ge atoms (such as edge-sharing GeS4/2 tetrahedra) in stoichiometric and S-rich glasses were analysed. The frequency of primitive rings was also calculated
A rapid and sensitive assay for quantification of siRNA efficiency and specificity
RNA Interference has rapidly emerged as an efficient procedure for knocking down gene expression in model systems. However, cross-reactivity, whereby multiple genes may be simultaneously targeted by a single short interfering RNA (siRNA), can potentially jeopardize correct interpretation of gene function. As such, it is essential to test the specificity of a siRNA prior to a full phenotypic analysis. To this end, we have adapted a reporter-based assay harnessing the sensitivity of luciferase activity to provide a quantitative readout of relative RNAi efficacy and specificity. We have tested different siRNAs directed against Thymosin β4 (Tβ4); determined their effectiveness at silencing Tβ4 and have both excluded off-target silencing of the Tβ4 homologue Thymosin β10 (Tβ10) and demonstrated partial knockdown of Tβ10 despite significant (12/23; 52%) sequence mismatch. This assay system is applicable to any RNAi study where there is a risk of targeting homologous genes and to the monitoring of off-target effects at the genome level following microarray expression profiling
QTL Underlying Voluntary Exercise in Mice: Interactions with the "Mini Muscle" Locus and Sex
Exercise improves many aspects of human health, yet many people remain inactive even when exercise is prescribed. We previously created a backcross (BC) between mice selectively bred for high levels of voluntary wheel running (VWR) and fixed for “mini muscle” (MM), a recessive mutation causing ∼50% reduction in triceps surae mass. We previously showed that BC mice having the MM trait ran faster and further than mice without MM and that MM maps to chromosome 11. Here, we genotyped the BC with genome-wide single nucleotide polymorphisms to identify quantitative trait loci (QTL) controlling voluntary exercise and tissue and body mass traits and to determine whether these QTL interact with the MM locus or with sex. We detected 3 VWR QTL, representing the first voluntary exercise QTL mapped using this high running selection line, and 5 tissue mass QTL. Several interactions between trait QTL and the MM locus as well as sex were also identified. These results begin to explain the genetic architecture of VWR and further support MM as a locus having major effects, including its main effects on the muscle phenotype, its pleiotropic effects on wheel running and tissue mass traits, and through its interactions with other QTL and with sex
Recommended from our members
Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendstocks
Technoeconomic and life-cycle analyses are presented for catalytic conversion of ethanol to fungible hydrocarbon fuel blendstocks, informed by advances in catalyst and process development. Whereas prior work toward this end focused on 3-step processes featuring dehydration, oligomerization, and hydrogenation, the consolidated alcohol dehydration and oligomerization (CADO) approach described here results in 1-step conversion of wet ethanol vapor (40 wt% in water) to hydrocarbons and water over a metal-modified zeolite catalyst. A development project increased liquid hydrocarbon yields from 36% of theoretical to >80%, reduced catalyst cost by an order of magnitude, scaled up the process by 300-fold, and reduced projected costs of ethanol conversion 12-fold. Current CADO products conform most closely to gasoline blendstocks, but can be blended with jet fuel at low levels today, and could potentially be blended at higher levels in the future. Operating plus annualized capital costs for conversion of wet ethanol to fungible blendstocks are estimated at 1.44/GJ in the future, similar to the unit energy cost of producing anhydrous ethanol from wet ethanol (100 per barrel but not at 60 per barrel. Life-cycle greenhouse gas emission reductions for CADO-derived hydrocarbon blendstocks closely follow those for the ethanol feedstock
- …