7 research outputs found

    Coral-macroalgal interactions: Herbivory and substrate type influence growth of the macroalgae Eucheuma denticulatum (N.L. Burman) Collins & Hervey, 1917 on a tropical coral reef

    Get PDF
    Introduced macroalgae becoming invasive may alter ecological functions and habitats in recipient ecosystems. In the Western Indian Ocean (WIO), non-native strains of the native macroalgae Eucheuma denticulatum were introduced for farming practices and consequently spread into the surrounding seascape. We investigated potential effects of non-native and native strains of this macroalgae on a branching coral. We conducted a four-factor field experiment where we examined growth and holdfast development of introduced and native E. denticulatum on live and dead branches of Acropora sp. in the presence and absence of herbivores in Unguja Island, Zanzibar. Moreover, we estimated coral and macroalgae condition by visual examinations, gene expression analyses, and photosynthetic measurements. Macroalgae did not attach to any live coral and coral condition was not impacted by the presence of E. denticulatum, regardless of geographical origin. Instead, necrotic tissue on the macroalgae in areas of direct contact with corals indicated damage inflicted by the coral. The biomass of E. denticulatum did not differ between the replicates attached to live or dead corals in the experiment, yet biomass was strongly influenced by herbivory and replicates without protection from herbivores had a significantly lower biomass. In the absence of herbivory, introduced E. denticulatum had significantly higher growth rates than native algae based on wet weight measurements. These results contribute to an increased understanding of environmental effects by the farming of a non-native strain of algae on corals and stresses the importance to maintain viable populations of macroalgal feeding fishes in such areas

    Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus)

    No full text
    Selective Serotonin Re-uptake Inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to persistent behavioural effects of pre- and perinatal exposure to SSRI which last into adulthood. To study effects of developmental exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After 100 days of remediation in clean water the fish were put through an extensive test battery. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 minutes and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes persistent behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.As manuscript in dissertation. with title: Developmental exposure to the SSRI citalopram causes persistent behavioural effects in the three-spined stickleback (Gasterosteus aculeatus)</p

    Application of magnetic resonance technologies in aquatic biology and seafood science

    No full text
    corecore