1,739 research outputs found

    The merger of vertically offset quasi-geostrophic vortices

    Get PDF
    We examine the critical merging distance between two equal-volume, equal-potential-vorticity quasi-geostrophic vortices. We focus on how this distance depends on the vertical offset between the two vortices, each having a unit mean height-to-width aspect ratio. The vertical direction is special in the quasi-geostrophic model (used to capture the leading-order dynamical features of stably stratified and rapidly rotating geophysical flows) since vertical advection is absent. Nevertheless vortex merger may still occur by horizontal advection. In this paper, we first investigate the equilibrium states for the two vortices as a function of their vertical and horizontal separation. We examine their basic properties together with their linear stability. These findings are next compared to numerical simulations of the nonlinear evolution of two spheres of potential vorticity. Three different regimes of interaction are identified, depending on the vertical offset. For a small offset, the interaction differs little from the case when the two vortices are horizontally aligned. On the other hand, when the vertical offset is comparable to the mean vortex radius, strong interaction occurs for greater horizontal gaps than in the horizontally aligned case, and therefore at significantly greater full separation distances. This perhaps surprising result is consistent with the linear stability analysis and appears to be a consequence of the anisotropy of the quasi-geostrophic equations. Finally, for large vertical offsets, vortex merger results in the formation of a metastable tilted dumbbell vortex.Publisher PDFPeer reviewe

    Quantum transitions induced by the third cumulant of current fluctuations

    Full text link
    We investigate the transitions induced by external current fluctuations on a small probe quantum system. The rates for the transitions between the energy states are calculated using the real-time Keldysh formalism for the density matrix evolution. We especially detail the effects of the third cumulant of current fluctuations inductively coupled to a quantum bit and propose a setup for detecting the frequency-dependent third cumulant through the transitions it induces.Comment: 4 pages, 3 figure

    QND measurement of a superconducting qubit in the weakly projective regime

    Full text link
    Quantum state detectors based on switching of hysteretic Josephson junctions biased close to their critical current are simple to use but have strong back-action. We show that the back-action of a DC-switching detector can be considerably reduced by limiting the switching voltage and using a fast cryogenic amplifier, such that a single readout can be completed within 25 ns at a repetition rate of 1 MHz without loss of contrast. Based on a sequence of two successive readouts we show that the measurement has a clear quantum non-demolition character, with a QND fidelity of 75 %.Comment: submitted to PR

    Joint Causal Inference from Multiple Contexts

    Get PDF
    The gold standard for discovering causal relations is by means of experimentation. Over the last decades, alternative methods have been proposed that can infer causal relations between variables from certain statistical patterns in purely observational data. We introduce Joint Causal Inference (JCI), a novel approach to causal discovery from multiple data sets from different contexts that elegantly unifies both approaches. JCI is a causal modeling framework rather than a specific algorithm, and it can be implemented using any causal discovery algorithm that can take into account certain background knowledge. JCI can deal with different types of interventions (e.g., perfect, imperfect, stochastic, etc.) in a unified fashion, and does not require knowledge of intervention targets or types in case of interventional data. We explain how several well-known causal discovery algorithms can be seen as addressing special cases of the JCI framework, and we also propose novel implementations that extend existing causal discovery methods for purely observational data to the JCI setting. We evaluate different JCI implementations on synthetic data and on flow cytometry protein expression data and conclude that JCI implementations can considerably outperform state-of-the-art causal discovery algorithms.Comment: Final version, as published by JML

    Superconductor-insulator transition in nanowires and nanowire arrays

    Get PDF
    Superconducting nanowires are the dual elements to Josephson junctions, with quantum phase-slip processes replacing the tunneling of Cooper pairs. When the quantum phase-slip amplitude ES is much smaller than the inductive energy EL, the nanowire responds as a superconducting inductor. When the inductive energy is small, the response is capacitive. The crossover at low temperatures as a function of ES/EL is discussed and compared with earlier experimental results. For one-dimensional and two-dimensional arrays of nanowires quantum phase transitions are expected as a function of ES/EL. They can be tuned by a homogeneous magnetic frustration.Comment: 15 pages, 10 figure

    Gruppenzusammensetzung und Interaktion bei kooperativem lernen in Mathematik

    Get PDF
    Kernfrage dieses Forschungsprojekts ist die Bedeutung von Individuellen-, Kleingruppen- und Klassenvariablen fĂĽr kognitive und affektive Lernergebnisse in Mathematik von SchĂĽlern der Sekundarstufe.Selected paper, originally presented at the International Convention Utrecht 1-4 July, 1992 of the International Association of Co-operation in Education (IASCE), Co-chaired by Prof. dr. Elizabeth Cohen, Stanford University & prof. dr. Jan Terwel, Utrecht University
    • …
    corecore