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Abstract

Structural Causal Models (SCMs) provide a
popular causal modeling framework. In this
work, we show that SCMs are not flexible
enough to give a complete causal representa-
tion of dynamical systems at equilibrium. In-
stead, we propose a generalization of the no-
tion of an SCM, that we call Causal Con-
straints Model (CCM), and prove that CCMs
do capture the causal semantics of such sys-
tems. We show how CCMs can be constructed
from differential equations and initial condi-
tions and we illustrate our ideas further on a
simple but ubiquitous (bio)chemical reaction.
Our framework also allows to model functional
laws, such as the ideal gas law, in a sensible
and intuitive way.

1 INTRODUCTION

Real-world processes are often complex and time-
evolving. The dynamics of such systems can be modeled
by (random) differential equations, which offer a fine-
grained description of how the variables in the system
change over time. A coarser but more tractable approach
are Structural Causal Models (SCMs), which provide a
modeling framework that is used in many fields such as
biology, the social sciences, and economy (Pearl, 2000).
Although SCMs have been succesfully applied to certain
static systems, a pressing concern is whether SCMs are
able to completely model the causal semantics of the sta-
tionary behavior of a dynamical system. In this work,
we prove that generally SCMs are not flexible enough to
completely model dynamical systems at equilibrium.

We generalize the notion of SCMs and introduce a novel
type of causal model, that we call Causal Constraints
Models (CCMs). We prove that they give a complete de-

scription of the causal semantics of dynamical systems at
equilibrium and show how a CCM can be derived from
differential equations and initial conditions. We further
motivate our approach by pointing out that CCMs, con-
trary to SCMs, correctly describe the causal semantics of
functional laws (e.g. the ideal gas law), which describe
relations between variables that are invariant under all
interventions. We illustrate the benefits of CCMs on a
simple but ubiquitous (bio)chemical reaction.

Causal models that arise from studying the behavior of
dynamical systems have received much attention over the
years. Fisher (1970), Mogensen et al. (2018), Rubenstein
et al. (2018), Sokol and Hansen (2014), and Voortman et
al. (2010) consider causal relations in systems that can
be modelled by (stochastic) differential equations that
are not in equilibrium. In contrast, we consider the sta-
tionary behaviour of dynamical systems, which does not
require us to model the system’s dependence on time.
Bongers and Mooij (2018), Hyttinen et al. (2012), Lac-
erda et al. (2008), Mooij et al. (2011), and Mooij et al.
(2013) show how cyclic SCMs may arise from studying
the stationary behavior of certain dynamical time-series
or differential equations, and how in some cases cyclic
SCMs can be learned from equilibrium data. SCMs are
well-understood and have recently been extended to also
include the cyclic case (Bongers et al., 2018; Forré and
Mooij, 2017). The drawback of the extension in Forré
and Mooij (2017), with respect to modeling equilibria
of dynamical systems, is that it requires the model to
have a globally compatible solution under any interven-
tion, which dynamical systems do not, in general, pos-
sess. Another modeling approach for dynamical systems
at equilibrium is to construct a, possibly cyclic, SCM
from the differential equations as Mooij et al. (2013) and
Bongers and Mooij (2018) do. In this work, we show
that these approaches to model the causal semantics of
the stationary behavior in dynamical systems cannot ac-
comodate the dependence of the equilibria on the initial
conditions of the system.



In previous work, researchers have come across sub-
tleties regarding the relation between the causal seman-
tics and conditional independence properties of dynami-
cal systems at equilibrium (Dash, 2005; Iwasaki and Si-
mon, 1994; Lacerda et al., 2008). Previously, researchers
have made additional assumptions about the underlying
dynamical system to circumvent these. Although Ruben-
stein et al. (2017) and Bongers and Mooij (2018) do not
make such restrictions, the price that one pays is that ei-
ther one must limit the interventions that can be modeled
or the equilibrium is no longer uniquely specified and
one is limited to modeling the fixed points of the system.
To the best of our knowledge, Causal Constraints Mod-
els are the first models that can completely capture the
causal semantics of the stationary behavior of dynamical
systems in general.

A disadvantage of CCMs over SCMs is that they do
not yet possess the intuitive graphical interpretation that
SCMs have. We consider representations of the indepen-
dence structure of CCMs outside the scope of this work.

1.1 STRUCTURAL CAUSAL MODELS

A statistical model over random variables, taking value
in a measurable space X , usually is a pair (X ,PX )
where PX is a (parametrized) family of probability dis-
tributions on X . A causal model on the other hand, can
be thought of as a family of statistical models, one for
each (perfect) intervention,

P̄X =
(
PX

do(I,ξI)
: I ∈ P(I), ξI ∈ X I

)
, (1)

where I is an index set and P(I) denotes the power set
of I (i.e. the set of all subsets of I). I represents the
intervention target and ξI a tuple of intervention values.
The null intervention do(∅) for I = ∅ corresponds to the
observed system.

SCMs are a special type of causal models that are spec-
ified by structural equations. Our formal treatment of
SCMs mostly follows Bongers et al. (2018) and Pearl
(2000). For the purposes of this paper, we deviate from
the usual definition of SCMs by not assuming inde-
pendence of exogenous variables and by not requiring
acyclicity (i.e. recursiveness).

Definition 1. Let I and J be index sets. A Structural
Causal Model (SCM)M is a triple (X , F,E), with:
• a product of standard measurable spaces X =∏

i∈I Xi (domains of endogenous variables),
• a tuple of exogenous random variables E =

(Ej)j∈J taking value in a product of standard mea-
surable spaces E =

∏
j∈J Ej ,

• a family F of measurable functions:1

fi : X pa(i)∩I × Epa(i)∩J → Xi, ∀i ∈ I.

Note that a cyclic structural causal model does not need
to imply a unique joint distribution PX

do(∅) on the space of
endogenous variables in the observed system, although
acyclic SCMs do (Bongers et al., 2018). When there ex-
ists a unique solution x ∈ X to the structural equations

xi = fi(xpa(i)∩I , epa(i)∩J ), ∀i ∈ I
for almost all e ∈ E , we say that the model is uniquely
solvable.
Definition 2. We say that a random variable X =
(Xi)i∈I is a solution to an SCMM = (X , F,E) if

Xi = fi(Xpa(i)∩I ,Epa(i)∩J ) a.s., ∀i ∈ I.

An SCM may have a unique (up to zero sets) solution,
multiple solutions, or there may not exist any solution at
all.

There are many types of interventions, corresponding to
different experimental procedures, that can be modeled
in an SCM. For the remainder of this work, we con-
sider perfect (also known as “surgical” or “atomic”) in-
terventions that force variables to take on a specific value
through some external force acting on the system.
Definition 3. A perfect intervention do(I, ξI) with tar-
get I ⊆ I and value ξI ∈ X I on an SCM M =
(X , F,E) maps it to the intervened SCMMdo(I,ξI) =

(X , F̃ ,E) with F̃ the family of measurable functions:

f̃i(xpa(i)∩I , epa(i)∩J )

=

{
ξi i ∈ I,
fi(xpa(i)∩I , epa(i)∩J ) i ∈ I\I.

Note that the solvability of an SCM may change after a
perfect intervention, e.g. a uniquely solvable SCM may
no longer be so after certain interventions.

1.2 DYNAMICAL SYSTEMS

We consider dynamical systems D describing p = |I|
(random) variables X(t) taking value in X = Rp.
They consist of a set of coupled first-order ordinary dif-
ferential equations (ODEs) where the initial conditions
X(0) are determined by exogenous random variables
E = (Ei)i∈I taking value in E = Rp. That is,

Ẋi(t) = fi(X(t)), ∀i ∈ I,
Xi(0) = Ei, ∀i ∈ I,

1pa(i) ⊆ I ∪ J denotes a subset of indexes that are suffi-
cient to determine the values of fi.



where the fi are locally Lipschitz continuous functions.2

Throughout this paper, we will assume for any dynamical
system we encounter that for PE-almost every e ∈ Rp
the initial value problem with X(0) = e has a unique
solutionX(t, e) for all t ≥ 0, given by

X(t, e) = X(0, e) +

∫ t

0

f
(
X(s, e)

)
ds. (2)

This solution X(t, e) can be trivially extended to E and
it is measurable in e for all t (Han and Kloeden, 2017).

A fixed point (or equilibrium point) of D is a point x∗ ∈
Rp for which f(x∗) = 0. For e ∈ Rp, the dynamical
system converges to an equilibriumX∗(e) ∈ Rp if

lim
t→∞

X(t, e) = X∗(e). (3)

If for PE-almost every e the limit in equation (3) exists,
then we say that D converges to the equilibrium solution
X∗ = limt→∞X(t,E).

Interventions on dynamical systems can be modeled in
different ways. One could for example fix the value
of targeted values at one time-point. Alternatively, one
could fix the trajectory of the targeted values as in Ruben-
stein et al. (2018). Here, we follow Mooij et al. (2013)
and define interventions as operations that fix the value
of the targeted variables to a constant (for all time).
Definition 4. A perfect intervention do(I, ξI) where
I ⊆ I and ξI ∈ X I results in the intervened dynami-
cal system Ddo(I,ξI) specified by

Ẋi(t) = 0, Xi(0) = ξi, ∀i ∈ I,
Ẋi(t) = fi(X(t)), Xi(0) = Ei, ∀i ∈ I\I.

We say that a causal model M completely captures the
causal semantics of the stationary behaviour of a dynam-
ical system D if for all I ⊆ I and all ξI ∈ X I : the
equilibrium solutions of Ddo(I,ξI)

coincide with the so-
lutions ofMdo(I,ξI)

(up to PE-null sets).

The construction of SCMs from dynamical systems in
Mooij et al. (2013) relies on the fact that for systems
that converge to a fixed point independent of initial con-
ditions (i.e. globally asymptotically stable systems), the
fixed point directly gives a complete description of its
stationary behavior. A much weaker stability assump-
tion is (global) semistability (Bhat and Bernstein, 1999;
Campbell and Rose, 1979), where solutions of a system
converge to a stable equilibrium determined by initial
conditions. Our definition follows Haddad et al. (2010).

2If the dynamics depends on (random) parameters, they can
be modeled as additional endogenous variables with vanish-
ing time derivatives and initial conditions corresponding to the
(random) parameters. Therefore, without loss of generality, we
may assume that the functions fi only depend on X .

Definition 5. Let D be a dynamical system and U ⊆ Rp
an invariant subset (i.e. if x(0) ∈ U then x(t) ∈ U for
all t ≥ 0). A fixed point x∗ ∈ U is Lyapunov stable
with respect to U if for all x(0) ∈ U : for all ε > 0
there exists δ > 0 such that if ‖x(0) − x∗‖ < δ then
for all t ≥ 0, ‖x(t) − x∗‖ < ε. It is semistable w.r.t.
U if, additionally, there exists a relatively open subset3

N of U that contains x∗ such that x(t) converges to a
Lyapunov stable fixed point for allx(0) ∈N . If N = U
then x∗ is globally semistable w.r.t. U . Finally, we say
thatD is globally semistable w.r.t. U if all its fixed points
are globally semistable w.r.t. U .
Definition 6. A dynamical system D is structurally
semistable if for all I ⊆ I there exists U ⊆ Rp
with PEI\I (UI\I) = 1 such that: Ddo(I,ξI)

is globally
semistable w.r.t. U (for any ξI ∈ X I ).

Whether a dynamical system converges to a certain fixed
point depends on initial conditions. This dependence can
often be described by constants of motion, and there ex-
ists a vast literature on how and when these can be de-
rived from differential equations. The notion of semista-
bility is appropriate in many real-world applications in
chemical kinetics, environmental, and economic systems
(Haddad et al., 2010). For chemical reaction networks,
there exist convenient criteria on the network structure
that guarantee global semistability (Chellaboina et al.,
2009), and for mechanical systems semistability char-
acterizes the motion of rigid bodies subject to damping
(Bhat and Bernstein, 1999).

2 DYNAMICAL SYSTEMS AS SCMs

We consider SCM representations of the equilibria in a
chemical reaction and conclude that, generally, SCMs
are not flexible enough to completely capture the causal
semantics of stationary behaviour in dynamical systems.

2.1 BASIC ENZYME REACTION

The basic enzyme reaction is a well-known example of
a (bio)chemical reaction network. It describes a system
where a substrate S reacts with an enzyme E to form
a complex C which is then converted into a product P
and the enzyme (Murray, 2002). In the open enzyme
reaction a constant influx of substrate and an efflux of
product are added (Belgacem and Gouzé, 2012). The
process can be presented by the following reaction graph,

S + E C P + E

k1

k−1

k2

k3k0

3N is a relatively open subset of U if there is an open set
N ′ ⊆ Rp such that N = N ′ ∩ U .



and k = [k0, k−1, k1, k2, k3] strictly positive parameters.

Differential equations for the concentrations of each
molecule in the system can be obtained by application
of the law of mass-action, which states that the rate of a
reaction is proportional to the product of the concentra-
tion of the reactants (Murray, 2002), yielding:

Ṡ(t) = k0 − k1S(t)E(t) + k−1C(t), (4)

Ė(t) = −k1S(t)E(t) + (k−1 + k2)C(t), (5)

Ċ(t) = k1S(t)E(t)− (k−1 + k2)C(t), (6)

Ṗ (t) = k2C(t)− k3P (t), (7)
(S(0), E(0), C(0), P (0)) = (s0, e0, c0, p0). (8)

We simulated the system in (4) to (7) with random ini-
tial conditions and also under interventions on S and E.
Figures 1a to 1c show how the time-trajectories of the
concentrations depend on initial conditions in different
interventional settings.

2.1.1 EQUILIBRIUM SOLUTIONS

By explicit calculation one can verify that given strictly
positive initial conditions, the dynamical system con-
verges to an equilibrium (S∗, C∗, E∗, P ∗) if it exists, for
any perfect intervention (one can also check that the sys-
tem is structurally semistable).4 The equilibria can be
found by deriving constraints on solutions of the system:
• At equilibrium the system is at rest and all time

derivatives (in the equations of motion) must vanish.
The equation of motion of each variable then results
in a constraint that is invariant under all interventions
that do not target that variable. For example, equa-
tion (4) yields the equilibrium equation

k0 − k1S∗E∗ + k−1C
∗ = 0,

which constrains the equilibrium state unless S is tar-
geted by an intervention.

• Symmetries or (linear) dependencies between the
time derivatives lead to conservation laws (i.e. con-
stants of motion), which are relations between vari-
ables that are time-invariant but that are typically in-
variant under fewer interventions than constraints of
the first type. For example, since Ċ(t) + Ė(t) = 0
for all t, we have that

C(t) + E(t) = c0 + e0, ∀ t, (9)

unless C, E or both C and E are targeted by an in-
tervention.

4See Belgacem and Gouzé (2012) and supplementary ma-
terial for details.

• A system may contain (derived) variables whose
time-derivative does not depend on itself. Since

Ṡ(t)− Ė(t) = k0 − k2C(t), (10)

the variable C cannot be ‘freely manipulated’, in
the sense that S(t) − E(t) does not converge to
equilibrium under interventions do(C = ξC) when
ξC 6= k0

k2
. For ξC = k0

k2
a new constant of motion is

introduced so that S(t) − E(t) = s0 − e0 unless S,
E or both S and E are targeted by an intervention.

It can be shown, through explicit calculation, that for any
perfect intervention these constraints have no solution
when the dynamical system does not converge to an equi-
librium and they have a unique solution when the system
does converge to an equilibrium. A complete causal de-
scription of the system can be found in Table 2 in the
supplementary material. Table 1 and Figure 1 illustrate
the rich causal semantics of this system (e.g. an interven-
tion on S makes C∗ dependent on the initial conditions,
while an intervention on E makes S∗ independent of the
initial conditions).

2.2 SCM REPRESENTATION

Globally asymptotically stable dynamical systems con-
verge to a unique fixed point and Mooij et al. (2013)
show how SCMs can then be constructed from ordinary
differential equations. For the basic enzyme reaction
(which is not globally asymptotically stable) their con-
struction method would yield the structural equations:

S∗ = k0+k−1C
∗

k1E∗
, (11)

E∗ = (k−1+k2)C
∗

k1S∗
, (12)

C∗ = k1S
∗E∗

k−1+k2
, (13)

P ∗ = k2
k3
C∗. (14)

While this SCM represents the causal semantics of the
system’s fixed points, it would be underspecified as an
SCM for the stationary behavior of the basic enzyme re-
action. Indeed, this SCM has multiple solutions, corre-
sponding to different possible initial conditions of the dy-
namical system and it does not contain any information
on which of its solutions is realized. Theorem 1 shows
that a complete SCM representation of the stationary be-
havior in the basic enzyme reaction does not exist.
Theorem 1. The causal semantics of the stationary be-
haviour of the basic enzyme reaction, and its dependence
on initial states, cannot be completely represented by an
SCM with endogenous variables S∗, E∗, C∗, P ∗.

Proof. The system converges to an equilibrium under the
intervention do(E∗ = e, C∗ = c, P ∗ = p).5 Setting Ṡ =

5See supplementary material A2.
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(a) S and P converge to an equilibrium
that depends on initial conditions in the
observed system.
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(b) C,E, and P converge to an equilib-
rium that depends on the initial condi-
tions after an intervention on S.
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(c) S,C, and P converge to an equilib-
rium that is independent of the initial
conditions after an intervention on E.

Figure 1: Temporal dependence of concentrations in the basic enzyme reaction in (4) to (7) with random initial
conditions and k = [0.4, 0.3, 1.0, 1.1, 0.5]. Other choices for the rate parameters give qualitatively similar results.

Table 1: Equilibrium solutions to the intervened
dynamical system of the basic enzyme reaction in
(4) to (7) under various interventions, where y =
1
2

√
(e0 − s0)2 + 4k0(k−1+k2)

k1k2
.

I S∗ C∗ E∗

∅ k0+k−1
k0
k2

k1(e0+c0− k0
k2

)

k0
k2

e0 + c0 − k0
k2

S = ξs ξs
k1ξs(e0+c0)
k−1+k2+k1ξs

(k−1+k2)(e0+c0)
k−1+k2+k1ξs

C = k0
k2

(e0−s0)
2 + y k0

k2

−(e0−s0)
2 + y

E = ξe
k0+k−1

k0
k2

k1ξe
k0
k2

ξe

0 in (4) and solving for S, we find that S∗ = k0+k−1c
k1e

and therefore any SCM that models the effect of this in-
tervention correctly must have a structural equation that
is equivalent to equation (11). Analogously, consider-
ing the remaining three interventions on three out of four
variables, we find that an SCM that correctly models the
effects of those interventions must have structural equa-
tions for E∗, C∗ and P ∗ that are equivalent to the struc-
tural equations (12) to (14), respectively. Table 1 shows
that the system converges to an equilibrium that depends
on the initial conditions c0 and e0 under the null inter-
vention. This equilibrium is a solution of the structural
equations in (11) to (14). However, these structural equa-
tions do not depend on initial conditions and admit other
solutions as well. Therefore they do not completely rep-
resent the stationary behaviour of the system.

3 CAUSAL CONSTRAINTS MODELS

We introduce Causal Constraints Models (CCMs) and
prove that they completely capture the causal semantics
of the stationary behaviour of dynamical systems.

SCMs are specified by structural equations which con-

strain its solutions unless the corresponding variable is
targeted by an intervention. CCMs are specified by
causal constraints: relations between variables that con-
strain the solutions of the model under explicitly speci-
fied intervention targets.

Definition 7. Let I, J and K be index sets. A Causal
Constraints Model (CCM) is a triple (X ,Φ,E), with:
• X and E as in Definition 1 (domain of endogenous

variables and tuple of exogenous random variables
respectively),

• a set Φ = {φk : k ∈ K} of causal constraints, each
of which is a triple φk = (fk, ck, Ak) where,
� fk : X pa(k)∩I × Epa(k)∩J → Yk is a measur-

able function, Yk a standard measurable space and
pa(k) ⊆ I ∪ J ,

� ck ∈ Yk is a constant,
� Ak ⊆ P(I) specifies the set of intervention targets

under which φk is active.

The following example illustrates the interpretation of
causal constraints in CCMs.

Example 1. Consider the price, supply, and demand of
a certain product, denoted by P, S, and D respectively,
related by the following causal constraint:

(f, c, A) = (S −D, 0, {∅, {D}, {S}, {D,S}}) . (15)

The constraint S −D = 0 is active in the observational
setting because ∅ ∈ A. It is also active when either D,
S or both D and S are targeted by an intervention. The
constraint becomes inactive after an intervention on P .
In other words, supply equals demand unless the price of
the product is intervened upon (e.g. price-fixing). 4

3.1 CCM SOLUTIONS

We define a solution of a CCM in complete analogy with
the definition of a solution of an SCM.



Definition 8. Let M = (X ,Φ,E) be a CCM and let
Φ∅ := {φk = (fk, ck, Ak) ∈ Φ : ∅ ∈ Ak}. A random
variableX taking value in X is a solution ofM if

fk(Xpa(k)∩I ,Epa(k)∩J ) = ck a.s., ∀(fk, ck, Ak) ∈ Φ∅.

Similar to SCMs, a CCM has either no solution, or it has
a solution and all its solutions may either induce a unique
or multiple distributions.

3.2 CCM INTERVENTIONS

Interventions on SCMs act on its structural equations.
Analogously, an intervention on a CCM acts on its causal
constraints. Roughly speaking, the activation sets of the
causal constraints in the model are updated and addi-
tional causal constraints describe the intervention.

Definition 9. Let M = (X ,Φ,E) be a CCM and let
I ⊆ I be the intervention target and ξI ∈ X I the target
value. The intervened CCM is given by Mdo(I,ξI) =

(X , Φ̃,E) where:
• for each i ∈ I we add a causal constraint

describing the intervened value of the targets,
(xi, ξi,P (I\{i})) ∈ Φ̃,

• for each causal constraint (f, c, A) ∈ Φ we get
a modified causal constraint (f, c, Ado(I)) ∈ Φ̃ if
Ado(I) 6= ∅, where

Ado(I) = {Ai \ J : Ai ∈ A, J ⊆ I ⊆ Ai}.

Definition 9 says that for any Ai ∈ A, and for any
combination of two subsequent interventions such that
I1 ∪ I2 = Ai, the constraint will be active. So after I1
(which needs to be a subset of Ai), any I2 that adds the
remaining elements Ai \ I1 (plus possibly any elements
that were already in I1) will activate the constraint.

Example. The effect of different interventions on a set
Ado(∅) = {∅, {1, 2}, {2, 3}}:

Ado(1) = {{2}, {1, 2}},
Ado(2) = {{1}, {1, 2}, {3}, {2, 3}},

Ado({1,2}) = Ado(1)do(2) = Ado(2)do(1)

= {∅, {1}, {2}, {1, 2}},
Ado({1,2,3}) = ∅.

Lemma 1 shows that the effect of multiple interventions
on a CCM depends neither on whether the interventions
are performed simultaneously or sequentially nor on the
order in which they are performed.

Lemma 1. Let M be a CCM for variables indexed by
I and let I, J ⊆ I be two disjoint sets of intervention

targets with intervention values ξI ∈ X I and ξJ ∈ X J

respectively. Then
(
Mdo(I,ξI)

)
do(J,ξJ )

=
(
Mdo(J,ξJ )

)
do(I,ξI)

=Mdo(I∪J,ξI∪J ).

Proof. The result follows directly from Definition 9.

The following example illustrates interventions on a
CCM.

Example 1 (Continued). Suppose that the supply of a
product, if it is not targeted by an intervention, is deter-
mined by a function fS , which takes as input the price
of the product P and an exogenous random variable E
(e.g. cost of production). The system for price, supply,
and demand can be represented by an (underspecified)
CCMM = (R3,Φ, E), where Φ consists of two causal
constraints:

(S −D, 0, {∅, {D}, {S}, {D,S}}),
(S − fS(P,E), 0, {∅, {D}, {P}, {D,P}}).

After an intervention on P we get Mdo(P,ξP ) =

(R3, Φ̃, E), where the updated set of causal constraints
is given by

(S − fS(P,E), 0, {∅, {D}, {P}, {D,P}}),
(P, ξP , {∅, {D}, {S}, {D,S}}).

Note that after an intervention on P , there would be
no intervention under which the causal constraint (S −
D, 0, {∅, {D}, {S}, {D,S}}) is still active (not even
for the null intervention), so it is discarded from Φ̃. 4

3.3 FROM SCM TO CCM

Structural equations in SCMs are constraints that are ac-
tive as long as their corresponding variables are not tar-
geted by interventions. This can be used to demonstrate
how, for real-valued SCMs, an equivalent CCM with the
same solutions under interventions can be constructed.6

Proposition 1. Let MSCM = (Rp, F,E) be a real-
valued SCM and I = {1, . . . , p} an index set. The CCM
MCCM = (Rp,Φ,E) with causal constraints Φ:

(
fj(xpa(j), epa(j))−xj , 0, Aj = P(I\{j})

)
, ∀j ∈ I,

has the same solutions asMSCM under any intervention.

Proof. The result follows from Definitions 8 and 9.
6The general case, where variables take value in a standard

measurable space, requires an additive structure on the variable
domains with a zero-element.



3.4 EQUILIBRIUM CAUSAL MODELS

We have seen that SCMs may fail to completely capture
the causal semantics of stationary behaviour in dynami-
cal systems. Here we prove that CCMs can always com-
pletely represent such causal semantics.
Theorem 2. Let D be a dynamical system such that for
all I ⊆ I and all ξI ∈ X I , Ddo(I,ξI)

has a unique
solution of the form (2). Then there exists a CCMM(D)
such that for all I ⊆ I and all ξI ∈ X I :

• the equilibrium solutions of Ddo(I,ξI)
coincide with

the solutions of
(
M(D)

)
do(I,ξI)

,

• the following diagram commutes:

D M(D)

Ddo(I,ξI)

(
M(D)

)
do(I,ξI).

Proof. By assumption, the intervened system Ddo(I,ξI)

has a unique solutionXt(ξI , eI\I) := X(t, (ξI , eI\I))
which is measurable in (ξI , eI\I) for all t. For
I ⊆ I, let CI := {(ξI , eI\I) ∈ R|I| × R|I\I| :
Xt(ξI , eI\I) converges for t→∞}. Consider the mea-
surable function gI : RI × RI\I → RI defined by

gI(x, eI\I) := X∗
(
(xI , eI\I)

)
1CI

(
(xI , eI\I)

)

+ (x+ 1)
(
1− 1CI

(
(xI , eI\I)

))
− x.

The constraint gI(x, eI\I) = 0 gives a contradiction if
and only if (xI , eI\I) /∈ CI , and reduces to the equation
x = X∗((xI , eI\I)) otherwise. Therefore, the equilib-
rium solutions of Ddo(I,ξI)

coincide with the solutions
of the equation gI(x, eI\I) = 0. The CCMM(D) :=
(X ,Φ,E) with Φ = {(gI ,0, AI = {I}) : I ⊆ I} satis-
fies the properties of the theorem by construction.

Theorem 2 proves that a CCM representation always ex-
ists that completely characterizes the causal semantics of
a dynamical system at equilibrium. Although we con-
struct a CCM in the proof of the theorem, it does not give
a parsimonious representation of the system.7 In the next
section, we will outline an intuitive and more convenient
construction method in the context of ODEs.

4 FROM ODE TO CCM

We consider how and when parsimonious CCM repre-
sentations can be derived from ODEs and initial condi-
tions in a dynamical system. We demonstrate how causal
constraints completely capture the stationary behavior of
the basic enzyme reaction and how, unlike SCMs, they
are able to correctly represent non-convergence.

7Interestingly, the CCM construction in the proof of Theo-
rem 2 can be applied to dynamical systems at finite time t.

4.1 CAUSAL CONSTRAINTS FROM
DIFFERENTIAL EQUATIONS

When modeling the stationary behavior of a system of
ODEs, setting the time-derivatives equal to zero con-
strains the solution space of the equilibrium model to the
fixed points of the system. A CCM allows us to interpret
such constraints as causal by explicitly specifying under
which interventions they put constraints on the equilib-
rium solutions of the system.

Example 2. For the basic enzyme reaction, some of the
causal constraints are obtained by setting the time deriva-
tives of the four variables of the system in equations (4)
to (7) to zero. The resulting equations constrain the so-
lutions of the system as long as the corresponding vari-
ables are not targeted by an intervention. This leads to
the causal constraints in equations (16) to (19) below,

(k0 + k−1C
∗ − k1S∗E∗, 0, P(I\{S})), (16)

(k1S
∗E∗ − (k−1 + k2)C∗, 0, P(I\{C})), (17)

(−k1S∗E∗ + (k−1 + k2)C∗, 0, P(I\{E})), (18)
(k2C

∗ − k3P ∗, 0, P(I\{P})), (19)

with I an index set for (S,C,E, P ). At this stage, the
CCM is equivalent to the underspecified SCM of the dy-
namical system (see also section 2.3). In the next section
we will proceed by adding more causal constraints. 4
Example 3. The Lotka-Volterra model (Murray, 2002)
is a set of differential equations that is often used to de-
scribe the dynamics of a system where prey (e.g. deer)
and predators (e.g. wolves), X1 and X2, interact. The
dynamics of the biological model are given by

Ẋ1 = X1(t)(k11 − k12X2(t)), (20)

Ẋ2 = −X2(t)(k22 − k21X1(t)), (21)

with initial values X1(0) > 0, X2(0) > 0 and strictly
positive rate parameters. The system has two fixed points
(X∗1 , X

∗
2 ) = (0, 0) and (X∗1 , X

∗
2 ) = (k22/k21, k11/k12),

which can be represented either by causal constraints,

(X∗1 (k11 − k12X∗2 ), 0, {∅, {2}}), (22)
(X∗2 (k22 − k21X∗1 ), 0, {∅, {1}}), (23)

or (equivalently) by structural equations:

X∗1 = X∗1 +X∗1 (k11 − k12X∗2 ),

X∗2 = X∗2 −X∗2 (k22 − k21X∗1 ).

These (structural) equations do not describe the stable
steady state behavior of the model, because the system
displays undamped oscillations around the positive fixed
point, as was pointed out by Mooij et al. (2013) and Mur-
ray (2002). In the next section we proceed by adding
additional relevant constraints to the CCM. 4



4.2 CAUSAL CONSTRAINTS FROM
CONSTANTS OF MOTION

For dynamical systems that admit a constant of motion
(i.e. a conserved quantity), the trajectories of its solu-
tions are confined to a space that is constrained by its ini-
tial conditions. Hence, the solutions for the equilibrium
must be similarly constrained. In a CCM we interpret
these constraints as causal by specifying under which in-
terventions they constrain the solution space.

Example 2 (Continued). For the basic enzyme reaction,
we include the conservation law that results from the lin-
ear dependence between the time derivative of the free
enzyme E and the complex C in equation (9). Since this
relation holds as long as the ‘cycle’ between C and E is
not broken, we obtain the following causal constraint

(C∗ + E∗ − (c0 + e0), 0, P(I\{C,E})). (24)

Another conservation law appeared after intervention on
the variable C. The resulting conservation law S(t) −
E(t) = s0 − e0 applies as long as the ‘cycle’ between
S and E is not broken by another intervention on the
system. This leads to the final causal constraint:

(S∗ − E∗ − (s0 − e0), 0, {{C}, {C,P}}). (25)

Let Φ be the set of causal constraints in (16) to (19) and
(24) to (25). In Section 2.1.1 we showed that the ac-
tive constraints in Φ have a unique solution under any
intervention. If E = (s0, e0, c0, p0) is a set of exoge-
nous random variables then the CCMM = (R4

>0,Φ,E)
completely captures the stationary behaviour of the basic
enzyme reaction. 4
Remark 1. Interestingly, if we treat C as a latent en-
dogenous variable that cannot be intervened upon, the
equilibrium to which the dynamics of the basic enzyme
reaction converges can be described by the following
marginal CCM (see supplementary material for details):

k0+k−1
k0
k2

k1E∗
− S∗, 0, P(I ′\{S}),

(k−1+k2)(c0+e0)
k−1+k2+k1S∗

− E∗, 0, P(I ′\{E}),
k2
k3
k1S
∗E∗

k−1+k2
− P ∗, 0, P(I ′\{P}),

where I ′ is an index set for {S,E, P}. From Proposition
1 it can be seen that there exists an equivalent SCM that
does completely capture the causal semantics of S,E,
and P , as long as one does not intervene on C.
Example 3 (Continued). The Lotka-Volterra model pro-
vides an example of a system that admits a non-linear
conservation law:

k21X1 + k22 log(X1)− k12X2 + k11 log(X2) = (26)
− k21X1(0) + k22 log(X1(0))− k12X2(0) + k11 log(X2(0)),

which represents a constraint that is only active in the
observational setting. If the system would converge
to an equilibrium (X∗1 , X

∗
2 ) the causal constraints de-

rived from the differential equations should hold simul-
taneously. These constraints are only satisfied when
the system starts out in one of the fixed points (e.g.
(X1(0), X2(0)) = (k22/k21, k11/k12)). Otherwise the
dynamical system exhibits steady-state oscillations and
the set of causal constraints has no solution.

A complete causal description can be obtained by adding
the following two causal constraints:

(X∗1 −X1(0)1{k11−k12X∗2≥0}, 0, {{2}}), (27)

(X∗2 −X2(0)1{k22−k21X∗1≤0}, 0, {{1}}). (28)

Addition of the causal constraint in equation (27) en-
sures that after an intervention on the amount of preda-
tors X2: a) the prey X1 goes extinct when there are too
many predators b) the model has no solution if there are
too few predators and c) the amount of prey is constant
if the amount of predators is exactly right. The causal
constraint in equation (28) can be interpreted similarly.
Together, the causal constraints in equations (22), (23),
(26), (27), and (28) capture the stationary behavior of the
predator-prey model.8 The SCM on the other hand has
the fixed points of the system as a solution and does not
predict the non-convergent behavior. 4

4.3 CONSTRUCTING CCMs

Causal constraints (or structural equations) derived from
differential equations result in a causal description of the
fixed points in a system. For structurally semistable sys-
tems the addition of causal constraints derived from con-
stants of motion results in a complete causal description
of the system’s stationary behavior when the constraints
specify the equilibria in terms of initial conditions.

Theorem 3. LetD be a dynamical system that converges
to a fixed point if it has at least one. LetM be a CCM
constructed from the ODEs and constants of motion in
D for which all solutions, if they exist, are unique up to
PE-zero sets. D converges to an equilibrium X∗ if and
only ifX∗ is a solution ofM.

Proof. First assume that D has a fixed point, so that D
converges to an equilibriumX∗(e) for almost every e ∈
Rp. We have that a) X∗(e) satisfies the constants of
motion in the dynamical system and b) for X∗(e) the
time-derivatives appearing in the ODEs are equal to zero.
Hence ifD converges toX∗ thenX∗ is a solution ofM.
SinceM has no more than one solution (up to zero sets),

8This can be verified by explicitly calculating the solutions
of the model under all interventions.



the reverse statement is also true. Now assume that D
has no fixed point. In that caseM has no solutions, and
D cannot converge to an equilibrium.

Corollary 1. Let D be structurally semistable andM a
CCM constructed from the ODEs and constants of mo-
tion in D for which under any intervention, all solutions,
if they exist, are unique up to PE-zero sets. Then for all
I ⊆ I and ξI ∈ R|I|: Ddo(I,ξI)

converges to an equilib-
riumX∗(I, ξI) iffX∗(I, ξI) is a solution ofMdo(I,ξI)

.

Proof. IfMdo(I,ξI)
has a solution then Ddo(I,ξI)

has a
fixed point with x∗I = ξI and it converges because D
is structurally semistable. If Mdo(I,ξI)

has no solution
then Ddo(I,ξI)

does not converge to a fixed point. The
result follows from Theorem 3 and Definition 9.

The basic enzyme reaction in Example 2 is structurally
semistable, while the Lotka-Volterra model in Example 3
is not. Corollary 1 tells us that for structurally semistable
systems, if a CCM constructed from ODEs and constants
of motions has at most one solution under any interven-
tion, then the CCM completely captures the causal se-
mantics of the stationary behaviour of the system.

5 FUNCTIONAL LAWS

CCMs can also represent functional laws, which are rela-
tions between variables that are invariant under all inter-
ventions. Causal constraints allow one to explicitly state
under which interventions a constraint is active. There-
fore a CCM never admits a solution that violates the
functional law, where an SCM would.

Example 4. It is well-known that the pressure P and
temperature T for N particles of an ideal gas in a fixed
volume V are related by the ideal gas law. In absence
of any knowledge about the environment, this system
can be represented by the (underspecified) CCM M =
(R2, {(PV −NkBT, 0,P(I))},P∅), where kB is Boltz-
mann’s constant, and I is an index set for the variables
(P, T ) in the system. If we were to describe the same
system using an SCM, then we would need two copies
of this causal constraint as structural equations:

P = NkBT
V , T = PV

NkB
.

Indeed, considering interventions on one of the variables
leaves no choice for the structural equation of the other
one. Furthermore, a simultaneous intervention on P and
T always has a solution in the SCM representation, even
when this means that the ideal gas law is violated. The
CCM representation typically does not have a solution
under such an intervention (unless the target values sat-
isfy the ideal gas law constraint). Therefore, the CCM
representation of functional laws like the ideal gas law

is more parsimonious and more natural than any SCM
representation can be. 4

A functional law can be any relation that is invariant un-
der all interventions. For example, a transformation of a
(set of) variables to another (set of) variables describing
the same system can also be modeled as a functional law.
Example 5. Let I be an index set of (T, V,O). Sup-
pose that the viscosity T of a salad dressing, consist-
ing of a certain amount of oil O and a certain amount
of vinegar V is determined by a causal constraint φ =
(f, 0,P(I\{T})) where f is a function depending on the
amount of oil and vinegar. By adding causal constraints

(Or −O/(O + V ), 0, P(I)),

(Vr − V/(O + V ), 0, P(I)),

a CCM allows us to have the relative amounts of oil and
vinegarOr and Vr in the model without running into log-
ical contradictions. 4

6 CONCLUSION

While Structural Causal Models (SCMs) form a very
popular modeling framework in many applied sciences,
we have shown that they are neither powerful enough to
model the rich equilibrium behavior of simple dynami-
cal systems such as the basic enzyme reaction, nor sim-
ple functional laws of nature like the ideal gas law. This
raises the question whether the common starting point in
causal discovery—that the data-generating process can
be modeled with an SCM—is tenable in certain applica-
tion domains, for example, for biochemical systems.

We believe that the examples presented in this paper form
a compelling motivation to extend the common causal
modeling framework to potentially broaden the impact
of causal modeling in dynamical systems. In this work,
we introduced Causal Constraints Models (CCMs). We
showed how they can be ‘constructed’ from differential
equations and initial conditons and proved that they can
completely capture the causal semantics of functional
laws and stationary behavior in dynamical systems.

One intuitively appealing aspect of SCMs is their graph-
ical interpretation. In contrast, CCMs are not equipped
with graphical representations yet. In future work, we
plan to investigate graphical representations of the con-
ditional independence structure of CCMs. This will al-
low us to better understand the causal interpretation of
the results of existing causal discovery algorithms.
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Supplementary Material

A Basic Enzyme Reaction

In this section we show the additional results, concerning the basic enzyme reaction, that were discussed in the main
paper. First we discuss the fixed points of the basic enzyme reaction. Then we show that the systems converges to its
fixed point whenever it exists. Finally, we derive a simple marginal model from the CCM representation of the basic
enzyme reaction.

A.1 Fixed points

The fixed points of the basic enzyme reaction, for all intervened systems, are given in Table 2. For any intervention,
these are obtained by solving the system of equations that one gets by considering the causal constraints in the CCM
in (16) to (25) that are active under that specific intervention. That is, we take all equations for which the intervention
is in the activation set.

Table 2: Fixed points of the basic enzyme reaction, where y = 1
2

√
(e0 − s0)2 + 4k0(k−1+k2)

k1k2
.

intervention S C E P

none
k0+k−1

k0
k2

k1(e0+c0− k0
k2

)

k0
k2

e0 + c0 − k0
k2

k0
k3

do(S = s) s k1s(e0+c0)
k−1+k2+k1s

(k−1+k2)(e0+c0)
k−1+k2+k1s

k2
k3

k1s(e0+c0)
k−1+k2+k1s

do(C = c), c = k0
k2

(s0−e0)
2 + y c −(s0−e0)

2 + y k2
k3
c

do(C = c), c 6= k0
k2

∅ ∅ ∅ ∅
do(E = e)

k0+k−1
k0
k2

k1e
k0
k2

e k0
k3

do(P = p)
k0+k−1

k0
k2

k1(e0+c0− k0
k2

)

k0
k2

e0 + c0 − k0
k2

p

do(S = s, C = c) s c k−1+k2
k1

c
s

k2
k3
c

do(S = s, E = e) s k1
k−1+k2

se e k2
k3

k1
k−1+k2

se

do(S = s, P = p) s k1s(e0+c0)
k−1+k2+k1s

(k−1+k2)(e0+c0)
k−1+k2+k1s

p

do(C = c, E = e) k0+k−1c
k1e

c e k2
k3
c

do(C = c, P = p), c = k0
k2

(s0−e0)
2 + y c −(s0−e0)

2 + y p

do(C = c, P = p), c 6= k0
k2

∅ ∅ ∅ ∅
do(E = e, P = p)

k0+k−1
k0
k2

k1e
k0
k2

e p

do(S = s, C = c, E = e) s c e k2
k3
c

do(S = s, C = c, P = p) s c k−1+k2
k1

c
s p

do(S = s, E = e, P = p) s k1
k−1+k2

se e p

do(C = c, E = e, P = p) k0+k−1c
k1e

c e p

do(S = s, C = c, E = e, P = p) s c e p

A.2 Convergence results for the basic enzyme reaction

In this section, we show that the basic enzyme reaction always converges to its fixed point, as long as it exists. We also
show that the intervened basic enzyme reaction has the same property. To prove this result we rely on both explicit
calculations and a convergence property of so-called cooperative systems that we obtained from Belgacem and Gouzé
(2012). To prove convergence for the observed system and the system after interventions on P and E, we use the
latter technique. Convergence to the equilibrium solution after interventions on S and C can be shown by explicit
calculation. The convergence results for combinations of interventions can be obtained by a trivial extension of the
arguments that were used in the other cases.



A.2.1 Cooperativity in the basic enzyme reaction

To show that the basic enzyme reaction converges to a unique equilibrium, if it exists, we first state a result that we
obtained from Belgacem and Gouzé (2012): cooperative systems as in Definition 10 have the attractive convergence
property in Proposition 2.

Definition 10. A system of ODEs Ẋ is cooperative if the Jacobian matrix has non-negative off-diagonal elements,
or there exists an integer k such that the Jabobian has (k × k) and (n − k) × (n − k) main diagonal matrices with
nonnegative off-diagonal entries and the rectangular off-diagonal submatrices have non-positive entries.

Proposition 2. Let Ẋ = f(X) be a cooperative system with a fixed point x∗. If there exist two points xmin,xmax ∈ X
such that xmin ≤ x∗ ≤ xmax and f(xmin) ≥ 0 and f(xmax) ≤ 0, then the hyperrectangle betweeen xmin and xmax is
invariant9 and for almost all initial conditions inside this rectangle the solution converges to x∗.

A.2.2 Convergence of the observed system

Recall that the dynamics of the basic enzyme reaction are given by

Ṡ(t) = k0 − k1S(t)E(t) + k−1C(t), (29)

Ė(t) = −k1S(t)E(t) + (k−1 + k2)C(t), (30)

Ċ(t) = k1S(t)E(t)− (k−1 + k2)C(t), (31)

Ṗ (t) = k2C(t)− k3P (t), (32)
S(0) = s0, E(0) = e0, C(0) = c0, P (0) = p0, (33)

where x0 = (s0, e0, c0, p0) are the initial conditions of the system.

The analysis in Belgacem and Gouzé (2012) of the basic enzyme reaction makes use of Proposition 2, but also includes
feedback from P to C. In this section, we repeat their analysis on our sligthly different model. Note that the arguments
given in this section can also be applied to the system where P is intervened upon.

We start by rewriting the system of ODEs in equation (29) to (32), by using the fact that Ė(t) + Ċ(t) = 0 so that
E(t) = e0 + c0 − C(t):

Ṡ(t) = k0 − k1S(t)(e0 + c0 − C(t)) + k−1C(t), (34)

Ċ(t) = k1S(t)(e0 + c0 − C(t))− (k−1 + k2)C(t), (35)

Ṗ (t) = k2C(t)− k3P (t). (36)

Cooperativity The corresponding Jacobian matrix is given by,

J(S,C, P ) =



−k1(e0 + c0 − C(t)) k−1 + k1S(t) 0
k1(e0 + c0 − C(t)) −(k−1 + k2)− k1S(t) 0

0 k2 −k3


 . (37)

Since all off-diagonal elements in the Jacobian matrix are nonnegative, the observational system is a cooperative
system by Definition 10.

Convergence From Table 2 we find that the observed system has a unique (positive) fixed point as long as e0 + c0 >
k0
k2

. We want to use Proposition 2 to show that the system converges to this fixed point, so we need to find xmin and
xmax so that all three derivatives are nonnegative and nonpositive respectively.

For xmin = (0, 0, 0), then Ṡ = k0 > 0 and Ċ = Ṗ = 0 so all derivatives are nonnegative. The upper vertex must be

9An invariant set is a set with the property that once a trajectory of a dynamical set enters it, it cannot leave.



chosen so that all derivative are non-positive:

Ṡ ≤ 0 ⇐⇒ S ≥ k0 + k−1C
k1(e0 + c0 − C)

,

Ċ ≤ 0 ⇐⇒ S ≥ (k−1 + k2)C

k1(e0 + c0 − C)
,

Ṗ ≤ 0 ⇐⇒ P ≥ k2
k3
C.

The basic enzyme reaction only has a fixed point as long as C < e0 + c0 (otherwise Ṡ(t) > 0). If we let C approach
e0 + c0, then the inequality constraints on the derivatives are satisfied as S and P go to infinity. More formally we can
choose

xmax = (S = max

(
k0 + k−1C

k1(e0 + c0 − C)
,

(k−1 + k2)C

k1(e0 + c0 − C)

)
, C = e0 + c0 − ε, P =

k2
k3
C +

1

ε
).

When ε approaches zero, both S and P go to infinity and all derivatives are nonpositive. Hence, by Proposition 2, the
system converges to its fixed point for almost all valid initial values of S,C, and P (for which the fixed point exists).

A.2.3 Intervention on E

Similarly, we can also show that the system where E is targeted by an intervention that sets it equal to e, converges to
the (unique) equilibrium in Table 2. The intervened system of ODEs is given by

Ṡ = k0 − k1eS + k−1C,

Ċ = k1eS − (k−1 + k2)C,

Ṗ = k2C − k3P.

The Jacobian is given by

J(S,C, P ) =



−k1e k−1 0
k1e −(k−1 + k2) 0
0 k2 −k3


 . (38)

Since all off-diagonal elements are nonnegative this is a cooperative system by Definition 10.

All derivatives are nonnegative at the point (S,C, P ) = (0, 0, 0), and all derivatives are nonpositive at the point
(s, c, p) where

s = max
(
k−1c+ k0

k1e
,

(k−1 + k2)c

k1e

)
,

p =
k2
k3
c,

where c → ∞. We then apply Proposition 2 to show that the intervened system converges to the equilibrium value
from all valid initial values.

A.2.4 Intervention on S

We show that the system converges to the equilibrium solution after an intervention on S by explicit calculation. The
intervened system of ODEs is given by

Ṡ(t) = 0,

Ė(t) = −k1sE(t) + (k−1 + k2)C(t),

Ċ(t) = k1sE(t)− (k−1 + k2)C(t),

Ṗ (t) = k2C(t)− k3P (t).



Since Ċ(t) + Ė(t) = 0, we can write E(t) = e0 + c0 − C(t), resulting in the following differential equation

Ċ(t) = k1s(e0 + c0 − C(t))− (k−1 + k2)C(t), (39)
= −(k1s+ k−1 + k2)C(t) + k1s(e0 + c0). (40)

We take the limit t→∞ of the solution to the initial value problem to obtain

C∗ = lim
t→∞

k1s(e0 + c0)

(k1s+ k1 + k2)
+ e−(k1s+k−1+k2)t =

k1s(e0 + c0)

(k1s+ k−1 + k2)
. (41)

The result for E follows from the fact that E(t) = e0 + c0 − C(t). The result for P follows by explicitly solving the
differential equation and taking the limit t→∞.

A.2.5 Intervention on C

There is no equilibrium solution when the intervention targeting C does not have value k0
k2

, as can be seen from Table
2. To show that the system converges when the equilibrium solution exists, we can explicitly solve the initial value
problem and take the limit t→∞. The intervened system of ODEs after an intervention do(C = k0

k2
) is given by

Ṡ(t) = −k1S(t)E(t) + (k−1 + k2)
k0
k2

= −k1S(t)E(t) + k,

Ė(t) = −k1S(t)E(t) + (k−1 + k2)
k0
k2

= −k1S(t)E(t) + k,

Ċ(t) = 0,

Ṗ (t) = k0 − k3P (t),

where we set k = (k−1 + k2)k0k2 for brevity.

The initival value problem for P can be solved explicitly, and by taking the limit t→∞ we obtain

P ∗ = lim
t→∞

P (t) = lim
t→∞

k0
k3

+ c · e−k3t =
k0
k3
,

which is the same as the equilibrium solution in Table 2.

The solution for S is more involved. First we substitute E(t) = S(t)− (s0− e0) (since Ṡ(t)− Ė(t) = 0) which gives
us the following differential equation

Ṡ(t) = −k1S(t)(S(t)− (s0 − e0)) + k = −k1S(t)2 + (s0 − e0)k1S(t) + k.

To solve this differential equation we first divide both sides by (−k1(S(t))2 + (s0 − e0)k1S(t) + k), and integrate
both sides with respect to t,

∫
dS(t)/dt

−k1S(t)2 + (s0 − e0)k1S(t) + k
dt =

∫
1dt (42)

∫
dS(t)

−k1S(t)2 + (s0 − e0)k1S(t) + k
= (t+ c) (43)

To evaluate the left-hand side of this equation we want to apply the following standard integral:

∫
1

ax2 + bx+ c
dx =




− 2√

b2−4ac tanh−1
(

2ax+b√
b2−4ac

)
+ C, if |2ax+ b| <

√
b2 − 4ac,

− 2√
b2−4ac coth−1

(
2ax+b√
b2−4ac

)
+ C, else.

(44)

for b2 − 4ac > 0. We first check the condition:

b2 − 4ac = (s0 − e0)2k21 + 4k1k > 0.



We now take the first solution to the standard integral (the second solution gives the same limiting result for S, as we
will see later on). We apply the first solution in (44) to (43) to obtain

2 tanh−1
(

2k1S(t)−(s0−e0)k1√
4k1k+(s0−e0)2k21

)

√
4k1k + (s0 − e0)2k21

= t+ c (45)

tanh−1
(

2k1S(t)− (s0 − e0)k1√
4k1k + (s0 − e0)2k21

)
=

1

2
(t+ c)

√
4k1k + (s0 − e0)2k21 (46)

2k1S(t)− (s0 − e0)k1√
4k1k + (s0 − e0)2k21

= tanh

(
1

2
(t+ c)

√
4k1k + (s0 − e0)2k21

)
, (47)

Solving (47) for S gives,

S(t) =
1

2k1

(
tanh

(
1

2
(t+ c)

√
4k1k + (s0 − e0)2k21

)√
4k1k + (s0 − e0)2k21 + k1(s0 − e0)

)
.

By taking the limit t→∞, plugging in k = (k−1 + k2)k0k2 , and rewriting we obtain the equilibrium solution in Table
2:

lim
t→∞

S(t) =
k1(s0 − e0) +

√
4k1k + (s0 − e0)2k21
2k1

=
k1(s0 − e0) +

√
4k1(k−1 + k2)k0k2 + (s0 − e0)2k21

2k1

=
1

2


(s0 − e0) +

√
(s0 − e0)2 + 4

k0(k−1 + k2)

k1k2


 .

Note that if we take the second solution to the standard integral in (44), then we would have ended up with the same
solution for S(t) with tanh replaced by coth, but the limit limt→∞ S(t) would still be the same.

The solution for E follows from the fact that E(t) = S(t)− (s0 − e0). The solutions for all joint interventions were
found by combining the arguments that were given for the single interventions.

A.3 Marginal model

In the paper we presented a marginal model for the basic enzyme reaction. Here we show how it can be derived from
the causal constraints in the CCM, which are given by

k0 + k−1C − k1SE = 0, P(I\{S}), (48)
k1SE − (k−1 + k2)C = 0, P(I\{C}), (49)
−k1SE + (k−1 + k2)C = 0, P(I\{E}), (50)

k2C − k3P = 0, P(I\{P}), (51)
C + E − (c0 + e0) = 0, P(I\{C,E}), (52)
S − E − (s0 − e0) = 0, {{C}, {C,P}}. (53)

We obtain the marginal model as follows:

1. Reduce the number of variables that can be targeted by an intervention: I ′ = {S,E, P}.
2. Rewrite the causal constraint in (49) to C = k1SE

k−1+k2
. Note that this equation holds under any intervention in

P(I ′) = P(I\{C}). Then substitute this expression for C into equation (48) to obtain

k0 + k−1
k0
k2

k1E
− S = 0, P(I ′\{S}),



where the activation set of the causal constraint is given by the intersection P(I\{S}) ∩ P(I ′). Then substitute
this expresion for C into equation (51) to obtain

k2
k3

k1SE

k−1 + k2
− P = 0, P(I ′\{P}),

where the activation set of the causal constraint is given by the intersection P(I\{P}) ∩ P(I ′).

3. Rewrite the causal constraint in (52) to C = e0 + c0 −E and note that this equation holds under interventions in
P(I ′\{E}). Then substitute this expression for C into equation (50) to obtain

(k−1 + k2)(c0 + e0)

k−1 + k2 + k1S
− E = 0, P(I ′\{E}),

where the activation set of the causal constraint is given by the intersection P(I\{C,E}) ∩ P(I ′\{E}).

This procedure results in the following marginal model

k0 + k−1
k0
k2

k1E
− S = 0, P(I ′\{S}),

(k−1 + k2)(c0 + e0)

k−1 + k2 + k1S
− E = 0, P(I ′\{E}),

k2
k3

k1SE

k−1 + k2
− P = 0, P(I ′\{P}).

Because we kept track of the interventions under which each equation is active when we substituted C into the equa-
tions of other causal constraints, we preserved the causal structure of the model. That is, the marginal CCM model has
the same solutions as the original CCM under interventions in P(I ′).


