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Abstract

While feedback loops are known to play im-
portant roles in many complex systems, their
existence is ignored in a large part of the causal
discovery literature, as systems are typically
assumed to be acyclic from the outset. When
applying causal discovery algorithms designed
for the acyclic setting on data generated by
a system that involves feedback, one would
not expect to obtain correct results. In this
work, we show that—surprisingly—the out-
put of the Fast Causal Inference (FCI) algo-
rithm is correct if it is applied to observational
data generated by a system that involves feed-
back. More specifically, we prove that for ob-
servational data generated by a simple and σ-
faithful Structural Causal Model (SCM), FCI
is sound and complete, and can be used to con-
sistently estimate (i) the presence and absence
of causal relations, (ii) the presence and ab-
sence of direct causal relations, (iii) the ab-
sence of confounders, and (iv) the absence
of specific cycles in the causal graph of the
SCM. We extend these results to constraint-
based causal discovery algorithms that exploit
certain forms of background knowledge, in-
cluding the causally sufficient setting (e.g., the
PC algorithm) and the Joint Causal Inference
setting (e.g., the FCI-JCI algorithm).

1 INTRODUCTION

Causal discovery, i.e., establishing the presence or ab-
sence of causal relationships between observed variables,
is an important activity in many scientific disciplines.
Typical approaches to causal discovery from observa-
tional data are either score-based, or constraint-based (or
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a combination of the two). The more generally applica-
ble constraint-based approach, which we focus on in this
work, is based on exploiting information in conditional
independences in the observed data to draw conclusions
about the possible underlying causal structure.

Although many systems of interest in various applica-
tion domains involve feedback loops or other types of
cyclic causal relationships (for example, in economical,
biological, chemical, physical, control and climatolog-
ical systems), most of the existing literature on causal
discovery from observational data ignores this and as-
sumes from the outset that the underlying causal system
is acyclic. Nonetheless, several algorithms have been de-
veloped specifically for the cyclic setting. For example,
quite some work has been done for linear systems (e.g.,
Richardson and Spirtes, 1999; Lacerda et al., 2008; Hyt-
tinen et al., 2010, 2012; Rothenhäusler et al., 2015).

More generally applicable are causal discovery algo-
rithms that exploit conditional independence constraints,
without assuming certain restrictions on the parameteri-
zations of the causal models (such as linearity). Pioneer-
ing work in this area was done by Richardson (1996b),
resulting in the CCD algorithm, the first constraint-based
causal discovery algorithm shown to be applicable in a
cyclic setting (see also Richardson, 1996a; Richardson
and Spirtes, 1999). It was shown to be sound under
the assumptions of causal sufficiency, the d-separation
Markov property, and d-faithfulness. More recently,
other algorithms that are sound under these assumptions
(except for the requirement of causal sufficiency) were
proposed (Hyttinen et al., 2014; Strobl, 2018).

However, it was already noted by Spirtes (1994, 1995)
that the d-separation Markov property assumption can
be too strong in general, and he proposed an alternative
criterion, making use of the so-called “collapsed graph”
construction. More recently, an alternative formulation
in terms of the σ-separation criterion was introduced,
and the corresponding Markov property was shown to



hold in a very general setting (Forré and Mooij, 2017).
Whereas the Markov property based on σ-separation ap-
plies under mild assumptions, the stronger Markov prop-
erty based on d-separation is limited to more specific set-
tings (e.g., continuous variables with linear relations, or
discrete variables, or the acyclic case) (Forré and Mooij,
2017). As discussed in (Forré and Mooij, 2017; Bongers
et al., 2020), the σ-separation Markov property seems ap-
propriate for a wide class of cyclic structural causal mod-
els with non-linear functional relationships between non-
discrete variables, for example structural causal mod-
els corresponding to the equilibrium states of dynami-
cal systems governed by random differential equations
(Bongers and Mooij, 2018).

Apart from a Markov property, constraint-based causal
discovery algorithms need to make some type of faith-
fulness assumption. A natural extension of the common
faithfulness assumption used in the acyclic setting is ob-
tained by replacing d-separation by σ-separation, that
we refer to as σ-faithfulness. Forré and Mooij (2018)
proposed a constraint-based causal discovery algorithm
that is sound and complete, assuming the σ-separation
Markov property in combination with the σ-faithfulness
assumption. However, their algorithm is limited in prac-
tice to about 5–7 variables because of the combinato-
rial explosion in the number of possible causal graphs
with increasing number of variables. Interestingly, un-
der the additional assumption of causal sufficiency, the
CCD algorithm is also sound under these assumptions
(as already noted in Section 4.5 of Richardson, 1996b).
Other causal discovery algorithms (LCD (Cooper, 1997),
ICP (Peters et al., 2016) and Y-structures (Mani, 2006)),
all originally designed for the acyclic setting, have been
shown to be sound also in the σ-separation setting (Mooij
et al., 2020). The most general scenario (under the
additional assumption of causal sufficiency, however)
is addressed by the NL-CCD algorithm (Chapter 4 in
Richardson, 1996b), which was shown to be sound un-
der the assumptions of the σ-separation Markov property
together with the (weaker) d-faithfulness assumption.

One of the classic algorithms for constraint-based causal
discovery is the Fast Causal Inference (FCI) algorithm
(Spirtes et al., 1995, 1999; Zhang, 2008b). It was de-
signed for the acyclic case, assuming the d-separation
Markov property in combination with the d-faithfulness
assumption. Recently, it was observed that when run on
data generated by cyclic causal models, the accuracy of
FCI is actually comparable to its accuracy in the strictly
acyclic setting (Figures 25, 26, 29, 31, 32 in Mooij et al.,
2020). This is surprising, as it is commonly believed that
the application domain of FCI is limited to acyclic causal
systems, and one would expect such serious model mis-
specification to result in glaringly incorrect results.

In this work, we show that when FCI is applied on data
from a cyclic causal system that satisfies the σ-separation
Markov property and is σ-faithful, its output is still sound
and complete. Furthermore, we derive criteria for how to
read off various features from the partial ancestral graph
output by FCI (specifically, the absence or presence of
ancestral relations, direct relations, cyclic relations and
confounders). This provides a practical causal discovery
algorithm for that setting that is able to handle hundreds
or even thousands of variables as long as the underlying
causal model is sparse enough, and that is also applicable
in the presence of latent confounders. It thus forms a
significant improvement over the previous state-of-the-
art in causal discovery for the σ-separation setting.

The results we derive in this work are not limited to FCI,
but apply to any constraint-based causal discovery algo-
rithm that solves the same task as FCI does, i.e., that
estimates the directed partial ancestral graph from con-
ditional independences in the data, e.g., FCI+ (Claassen
et al., 2013) and CFCI (Colombo et al., 2012). Our re-
sults therefore make constraint-based causal discovery in
the presence of cycles as practical as it is in the acyclic
case, without requiring any modifications of the algo-
rithms. Our work also provides the first characteriza-
tion of the σ-Markov equivalence class of directed mixed
graphs. We extend our results to variants of algorithms
that exploit certain background knowledge, for example,
causal sufficiency (e.g., the PC algorithm, Spirtes et al.,
2000) or the Joint Causal Inference framework (e.g., the
FCI-JCI algorithm, Mooij et al., 2020). For simplicity,
we assume no selection bias in this work, but we expect
that our results can be extended to allow for that as well.

2 PRELIMINARIES

In Section A (Supplementary Material), we introduce our
notation and terminology and provide the reader with a
summary of the necessary definitions and results from
the graphical causal modeling and discovery literature.
For more details, we refer the reader to the literature
(Pearl, 2009; Spirtes et al., 2000; Richardson and Spirtes,
2002; Zhang, 2006, 2008b,a; Bongers et al., 2020; Forré
and Mooij, 2017). Here, we only give a short high-level
overview of the key notions because of space constraints.

There exists a variety of graphical representations of
causal models. Most popular are directed acyclic graphs
(DAGs), presumably because of their simplicity. DAGs
are appropriate under the assumptions of causal suffi-
ciency (i.e., there are no latent common causes of the ob-
served variables), acyclicity (absence of feedback loops)
and no selection bias (i.e., there is no implicit condi-
tioning on a common effect of the observed variables).
DAGs have many convenient properties, amongst which



a Markov property (which has different equivalent for-
mulations, the most prominent one being in terms of the
notion of d-separation) and a simple causal interpreta-
tion. A more general class of graphs are acyclic di-
rected mixed graphs (ADMGs). These make use of addi-
tional bidirected edges to represent latent confounding,
and have a similarly convenient Markov property (some-
times referred to as m-separation) and causal interpre-
tation. When also dropping the assumption of acyclic-
ity (thereby allowing for feedback), one can make use of
the more general class of directed mixed graphs (DMGs).
These graphs can be naturally associated with (possibly
cyclic) structural causal models (SCMs) and can repre-
sent feedback loops. The corresponding Markov prop-
erties and causal interpretation are more subtle (Bongers
et al., 2020) than in the acyclic case. Cyclic SCMs can be
used, e.g., to describe the causal semantics of the equi-
librium states of dynamical systems governed by random
differential equations (Bongers and Mooij, 2018).

In this work, we will restrict ourselves to the subclass
of simple SCMs, i.e., those SCMs for which any sub-
set of the structural equations has a unique solution for
the corresponding endogenous variables in terms of the
other variables appearing in these equations. Simple
SCMs admit (sufficiently weak) cyclic interactions but
retain many of the convenient properties of acyclic SCMs
(Bongers et al., 2020). They are a special case of modular
SCMs (Forré and Mooij, 2017). In particular, they satisfy
the σ-separation Markov property and their graphs have
an intuitive causal interpretation.1

For acyclic constraint-based causal discovery, ADMGs
provide a more fine-grained representation than neces-
sary, because one can only recover the Markov equiva-
lence class of ADMGs from conditional independences
in observational data. A less expressive class of graphs,
maximal ancestral graphs (MAGs), was introduced by
Richardson and Spirtes (2002). Each ADMG induces
a MAG and each MAG represents a set of ADMGs.
The mapping from ADMG to MAG preserves the d-
separations and the (non-)ancestral relations. Contrary to
ADMGs, MAGs have at most a single edge connecting
any pair of distinct variables. One of the key properties
that distinguishes MAGs from ADMGs is that Markov-
equivalent MAGs have the same adjacencies. In addition
to being able to handle latent variables, MAGs can also
represent implicit conditioning on a subset of the vari-

1The σ-separation criterion is very similar to the d-
separation criterion, with the only difference being that σ-
separation has as an additional condition for a non-collider to
block a path that it has to point to a node in a different strongly
connected component. Two nodes in a DMG are said to be in
the same strongly connected component if and only if they are
both ancestor of each other.
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Figure 1: Relations between various representations.

ables, making use of undirected edges. Therefore, they
can be used to represent both latent variables and selec-
tion bias.

It is often convenient when performing causal reasoning
or discovery to be able to represent a set of hypothetical
MAGs in a compact way. For these reasons, partial an-
cestral graphs (PAGs) were introduced (Zhang, 2006).2

The usual way to think about a PAG is as an object that
represents a set of MAGs. The (Augmented) Fast Causal
Inference (FCI) algorithm (Spirtes et al., 1995, 1999;
Zhang, 2008b) takes as input the conditional indepen-
dences that hold in the data (assumed to be d-Markov and
d-faithful w.r.t. a “true” ADMG), and outputs a PAG. As
shown in seminal work (Spirtes et al., 1995, 1999; Ali
et al., 2005; Zhang, 2008b), the FCI algorithm is sound
and complete, and the PAG output by FCI represents the
Markov equivalence class of the true ADMG.

In this work, we will for simplicity assume no selection
bias. This means that we can restrict ourselves to MAGs
without undirected edges, which we refer to as directed
MAGs (DMAGs), and PAGs without undirected or circle-
tail edges, which we refer to as directed PAGs (DPAGs).
Almost all proofs will be deferred to Section C (Supple-
mentary Material) because of space constraints.

3 EXTENSIONS TO THE CYCLIC
SETTING

The theory of MAGs and PAGs is rather intricate. A nat-
ural question is how this theory can be extended when the

2PAGs were originally introduced by Richardson (1996b)
in order to represent the output of the CCD algorithm. It was
conjectured by Richardson that PAGs could also be used to
represent the output of the FCI algorithm, which was origi-
nally formulated in terms of Partially Oriented Inducing Path
Graphs (POIPGs). This conjecture was proved subsequently
by Spirtes. Richardson (p. 102, 1996b) notes: “It is an open
question whether or not the set of symbols is sufficiently rich
to allow us to represent the class of cyclic graphs with latent
variables.” In the present work we turned full circle by rein-
terpreting PAGs as representing properties of DMGs, and have
thereby answered this question affirmatively.



assumption of acyclicity is dropped. This does not seem
to be straightforward at first sight. An obvious approach
would be to generalize the notion of MAGs by adding
edge types that represent cycles. However, it would prob-
ably require a lot of effort to rederive and reformulate the
known results about MAGs and PAGs in this more gen-
eral setting. In this work, we take another approach: we
represent a (possibly cyclic) DMG directly by a DPAG.
In order to make this idea precise, we first need to extend
the notion of inducing path to the cyclic setting. Our
strategy is illustrated in Figure 1.

3.1 INDUCING PATHS

We propose the following generalization of the notion of
inducing path (Definition 9) to the σ-separation setting:

Definition 1 Let G = 〈V, E ,F〉 be directed mixed graph
(DMG). An inducing path (walk) between two nodes
i, j ∈ V is a path (walk) in G between i and j on which
every collider is in ANG({i, j}), and each non-collider
on the path (walk), except i and j, only has outgoing
directed edges to neighboring nodes on the path (walk)
that lie in the same strongly connected component of G.

This is indeed the proper generalization, since it has the
following property.

Proposition 1 Let G = 〈V, E ,F〉 be a DMG and i, j two
distinct vertices in G. Then the following are equivalent:

(i) There is an inducing path in G between i and j;
(ii) There is an inducing walk in G between i and j;

(iii) i 6⊥σG j |Z for all Z ⊆ V \ {i, j}.

In words: there is an inducing walk (or path) between
two nodes in a DMG if and only if the two nodes can-
not be σ-separated by any subset of nodes that does not
contain either of the two nodes.

3.2 REPRESENTING DMGs BY DPAGs

The following definition forms the key to our approach.

Definition 2 Let P be a DPAG and G a DMG, both with
vertex set V . We say that P contains G if all of the fol-
lowing hold:

(i) two vertices i, j are adjacent in P if and only if
there is an inducing path between i, j in G;

(ii) if i ∗→ j in P (i.e., i → j in P or i ◦→ j in P or
i↔ j in P), then j /∈ ANG(i);

(iii) if i→ j in P then i ∈ ANG(j).

It is only a slight variation on how PAGs are tradition-
ally interpreted, and agrees with the traditional (acyclic)
interpretation when restricting the DMGs to be acyclic.

3.3 ACYCLIFICATIONS

Inspired by the “collapsed graph” construction of Spirtes
(1994, 1995), Forré and Mooij (2017) introduced a no-
tion of acyclification for a class of graphical causal mod-
els termed HEDGes, but the same concept can be defined
for DMGs, which we will do here.

Definition 3 Given a DMG G = 〈V, E ,F〉. An acyclifi-
cation of G is an ADMG G′ = 〈V, E ′,F ′〉 with

(i) the same nodes V;
(ii) for any pair of nodes {i, j} such that i 6∈ SCG(j):

(a) i → j ∈ E ′ iff there exists a node k such that
k ∈ SCG(j) and i→ k ∈ E;

(b) i ↔ j ∈ F ′ iff there exists a node k such that
k ∈ SCG(j) and i↔ k ∈ F;

(iii) for any pair of distinct nodes {i, j} such that i ∈
SCG(j): i→ j ∈ E ′ or i← j ∈ E ′ or i↔ j ∈ F ′.

In words: all strongly connected components are made
fully-connected, edges between strongly connected com-
ponents are preserved, and any edge into a node in a
strongly connected component must be copied and made
adjacent to all nodes in the strongly connected compo-
nent. Note that a DMG may have multiple acyclifica-
tions. An example is given in Figure 2.

All acyclifications share certain “spurious” edges: the
additional incoming directed and adjacent bidirected
edges connecting nodes of two different strongly con-
nected components. These have no causal interpretation
but are necessary to correctly represent the σ-separation
properties as d-separation properties. The skeleton of
any acyclification G′ of G equals the skeleton of G plus
additional spurious adjacencies: the edges i −− j with
i ∗→ k and k ∈ SCG(j), and the edges i −− j with
i ∈ SCG(j) where i and j are not adjacent in G. These
“spurious edges” added in any acyclification of a DMG
G correspond with (non-trivial) inducing paths in G.

The “raison d’être” for acyclifications is that they are σ-
separation-equivalent to the original DMG, i.e., their σ-
independence models agree:

Proposition 2 For any DMG G and any acyclification
G′ of G, IMσ(G) = IMσ(G′) = IMd(G′).

One particular acyclification that we will make use of
repeatedly will be denoted Gacy, and is obtained by re-
placing all strongly connected components of G by fully-
connected bidirected components without any directed
edges (i.e., if i ∈ SCG(j) then i ↔ j in G′, but neither
i → j nor j → i in G′). Another useful set of acycli-
fications is obtained by replacing all strongly connected
components of G by arbitrary fully-connected DAGs, and
optionally adding an arbitrary set of bidirected edges.
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Figure 2: From left to right: Directed mixed graph G, two of its acyclifications (Gacy and G′) and the DPAG output by
FCI P = PFCI(IMσ(G)) = PFCI(IMd(G′)) = PFCI(IMd(Gacy)).

Other important properties of acyclifications are:

Proposition 3 Let G be a DMG and i, j two nodes in G.

(i) If i ∈ ANG(j) then there exists an acyclification G′
of G with i ∈ ANG′(j);

(ii) If i /∈ ANG(j) then i /∈ ANG′(j) for all acyclifica-
tions G′ of G;

(iii) There is an inducing path between i and j in G if
and only if there is an inducing path between i and
j in G′ for any acyclification G′ of G.

3.4 SOUNDNESS AND COMPLETENESS

In the acyclic setting, the FCI algorithm was shown to
be sound and complete (Zhang, 2008b). The notion of
acyclifications, together with their elementary properties
(Propositions 2 and 3) allows us to easily extend these
soundness and completeness results to the σ-separation
setting (allowing for cycles).

Consider FCI as a mapping PFCI from independence
models (on variables V) to DPAGs (with vertex set V),
which maps the independence model of a DMG G to the
DPAG PFCI(IMσ(G)).

Theorem 1 In the σ-separation setting (but without se-
lection bias), FCI is

(i) sound: for all DMGs G, PFCI(IMσ(G)) contains G;
(ii) arrowhead complete: for all DMGs G: if i /∈

ANG̃(j) for any DMG G̃ that is σ-Markov equiv-
alent to G, then there is an arrowhead i ←∗ j in
PFCI(IMσ(G));

(iii) tail complete: for all DMGs G, if i ∈ ANG̃(j) in
any DMG G̃ that is σ-Markov equivalent to G, then
there is a tail i→ j in PFCI(IMσ(G));

(iv) Markov complete: for all DMGs G1 and G2, G1 is
σ-Markov equivalent to G2 iff PFCI(IMσ(G1)) =
PFCI(IMσ(G2)).

Proof sketch: The main idea is the following (see
also Figure 1). For all DMGs G, IMσ(G) = IMd(G′)
for any acyclification G′ of G (Proposition 2). Hence
FCI maps any acyclification G′ of G to the same DPAG

PFCI(IMσ(G)), and thereby any conclusion we draw
about these acyclifications can be transferred back to a
conclusion about G by means of Proposition 3. A com-
plete proof is given in Section C of the Supplementary
Material. �

Note that these definitions of soundness and complete-
ness reduce to their acyclic counterparts (Zhang, 2008b)
when restricting to ADMGs. In particular, the soundness
and Markov completeness properties together imply that
the DPAG PFCI(IMσ(G)) output by FCI, when given as
input the σ-independence model of a DMG G, represents
the σ-Markov equivalence class of G. In other words,
FCI provides a characterization of the σ-Markov equiva-
lence class of a DMG. This is, to the best of our knowl-
edge, the first such characterization.

In order to read off the independence model from the
DPAG PFCI(IMσ(G)), one can follow the same proce-
dure as in the acyclic case: first construct a representa-
tive DMAG (for details, see Zhang (2008b)) and then ap-
ply the d-separation criterion to this DMAG. While the
soundness of FCI (Theorem 1(i)) allows us to read off
some (non-)ancestral relations from the DPAG output by
FCI, this is by far not all causal information that is iden-
tifiable from the σ-Markov equivalence class. In the fol-
lowing sections, we will discuss how various causal fea-
tures can be identified from DPAGs.

3.5 IDENTIFIABLE (NON-)ANCESTRAL
RELATIONS

Zhang (2006) conjectured the soundness and completess
of a criterion to read off all invariant ancestral relations
from a complete DPAG, i.e., to identify the ancestral re-
lations that are present in all Markov equivalent ADMGs
that are represented by a complete DPAG. Roumpelaki
et al. (2016) proved soundness of the criterion.3 We ex-
tend Theorem 3.1 in (Roumpelaki et al., 2016) to DPAGs
and DMGs:

3They also claim to have proved completeness, but their
proof is flawed: the last part of the proof that aims to prove
that u, v are non-adjacent appears to be incomplete.



Proposition 4 Let G be a DMG, and let P be a DPAG
that contains G, and such that all unshielded triples in
P have been oriented according to FCI ruleR0 (Zhang,
2008b) using IMσ(G). For two nodes i 6= j ∈ P: If

• there is a directed path from i to j in P , or
• there exist uncovered possibly directed paths (see

Definition 13) from i to j in P of the form i, u, . . . , j
and i, v, . . . , j such that u, v are distinct non-
adjacent nodes in P ,

then i ∈ ANG(j), i.e., i is ancestor of j according to G.

As an example, from the (complete) DPAG in Figure 2 it
follows that X2 ∈ ANG(X4), and X2 ∈ ANG(X7).

Zhang (2006, p. 137) provides a sound and complete cri-
terion to read off definite non-ancestors from a complete
DPAG, assuming acyclicity. We can directly extend this
criterion to DPAGs and DMGs:

Proposition 5 Let G be a DMG, and let P be a DPAG
that contains G. For two nodes i 6= j ∈ P: if there is no
possibly directed path from i to j in P then i /∈ ANG(j).

As an example, from the DPAG in Figure 2 we can read
off that X8 cannot be ancestor of X1 in G, nor the other
way around. However, X3 ◦−◦ X6 → X7 is a possibly
directed path in the DPAG, and soX3 may be (and in this
case is) ancestor of X7 in G.

3.6 IDENTIFIABLE NON-CONFOUNDED
PAIRS

While in ADMGs and DMGs confounding is indicated
by bidirected edges, in DPAGs confounding can also
“hide” behind directed edges. The following notion is
of key importance in this regard:

Definition 4 (Zhang (2008a)) A directed edge i → j in
a DMAG is said to be visible if there is a node k not
adjacent to j, such that either there is an edge between
k and i that is into i, or there is a collider path between
k and i that is into i and every collider on the path is
a parent of j. Otherwise i → j is said to be invisible.
The same notion applies to a DPAG, but is then called
definitely visible (and its negation possibly invisible).

For example, in the DPAG in Figure 2, edge X6 → X7

is definitely visible (by virtue of X2 → X6), as are all
edges X2 → {X3, X4, X5, X6} (by virtue of X8 ◦→
X2, or X9 ◦→ X2).

The notion of (in)visibility is closely related with con-
founding, as shown in Lemma 9 and 10 in Zhang
(2008a). To generalize this, we make use of the follow-
ing Lemma.

Lemma 1 Let P be a DPAG that contains DMG G, and
let k ∗→ i be an edge in P that is into i. Then there
exists an inducing walk in G between k and i that is into
i. If k ↔ i in P , then there exists an inducing walk in G
between k and i that is both into k and into i.

This allows us to generalize Lemma 9 in (Zhang, 2008a)
to the cyclic setting (with almost identical proof).

Lemma 2 Let P be a DPAG, and i→ j a directed edge
in P . If i → j is definitely visible in P , then for all
DMGs G contained in P , there exists no inducing walk
between i and j in G that is into i.

This provides us with a sufficient condition to read off
unconfounded pairs of nodes from DPAGs:

Proposition 6 Let P be a DMAG and G be a DMG con-
tained in P . Let i 6= j be two nodes in P . If i and j are
not adjacent in P , or if there is a directed edge i → j
in P that is definitely visible in P , then i ↔ j is absent
from G.

For example, from the DPAG in Figure 2 one can infer
that there is no bidirected edge X2 ↔ X7 in the under-
lying DMG G, as the two nodes are not adjacent in the
DPAG, and also that there is no bidirected edge between
X2 and any node in {X3, X4, X5, X6} in G, as all these
edges are definitely visible in the DPAG.

3.7 IDENTIFYING DIRECT (NON-)CAUSES

Contrary to DMGs, a directed edge in a DPAG does not
necessarily correspond with a direct causal relation. The
following proposition provides sufficient conditions to
identify the absence of a directed edge from the DPAG.

Proposition 7 Let P be a DPAG that contains a DMG
G. For two nodes i 6= j in P , if i ←∗ j in P , or i and j
are not adjacent in P , then i→ j is not present in G.

The following proposition was inspired by Theorem 3 in
Borboudakis et al. (2012) and provides sufficient condi-
tions to conclude the presence of a directed edge from
the DPAG.

Proposition 8 Let P be a DPAG that contains a DMG
G. For two nodes i 6= j in P , if i→ j in P and:

(i) there does not exist a possibly directed path from i
to j in P that avoids the edge i→ j, or

(ii) if there is no inducing walk between i and j in
G that is both into i and j (for example, because
i → j is definitely visible in P), and for all ver-
tices k such that there is a possibly directed path
i ∗−−∗ k ∗−−∗ j from i to j in P , the edge k → j is



definitely visible in the DPAG P∗ obtained from P
by replacing the edge between k and j by k → j,

then i→ j is present in G.

As an example, the edge X2 → X3 in the DPAG in Fig-
ure 2 cannot be identified as being present in G because
both conditions are not satisfied: (i) because of the pos-
sibly directed path X2 → X4 ◦−◦ X3, (ii) because of the
same path where the edge X4 → X3 would be possibly
invisible if oriented in that way. Also the edgeX1 → X3

in the DPAG cannot be identified as being present in G.
The edge X6 → X7 in the DPAG, on the other hand, is
identifiably present in G.

3.8 IDENTIFIABLE NON-CYCLES

Strongly connected components in the DMG end up as
a specific pattern in the DPAG. This can be used as a
sufficient condition for identifying the absence of certain
cyclic causal relations in a complete DPAG.

Proposition 9 Let G be a DMG and denote by P =
PFCI(IMσ(G)) the corresponding complete DPAG out-
put by FCI. Let i 6= j be two nodes in P . If j ∈ SCG(i),
then i ◦−◦ j in P , and for all nodes k: k → i in P iff
k → j in P , and k ↔ i in P iff k ↔ j in P , and k ◦→ i
in P iff k ◦→ j in P .

Hence, any pair of nodes that does not fit this pattern can-
not be part of a cycle in G. For example, in the complete
DPAG in Figure 2, only the nodes in {X3, X4, X5, X6}
might be part of a cycle. For all other pairs of nodes, it
follows from Proposition 9 that they cannot be part of a
cycle. This sufficient condition is also necessary:

Proposition 10 Let G be a DMG and denote by P =
PFCI(IMσ(G)) the corresponding complete DPAG out-
put by FCI. Let i 6= j be two nodes in P . If there is an
edge i ◦−◦ j in P , and all nodes k for which k ∗→ i is in
P also have an edge of the same type k ∗→ j (i.e., the two
edge marks at k are the same) in P , then there exists a
DMG G̃ with j ∈ SCG̃(i) that is σ-Markov equivalent to
G, but also a DMGH with j /∈ SCH(i) that is σ-Markov
equivalent to G.

In other words, under the conditions of this proposition,
it is not identifiable from P alone whether j and i are
part of a causal cycle.

4 EXTENSIONS FOR BACKGROUND
KNOWLEDGE

In this section, we discuss extensions of our results to sit-
uations in which available causal background knowledge
is taken into account by causal discovery algorithms.

Assume that we have certain background knowledge,
formalized as a Boolean function Ψ on the set of all
DMGs (indicating for each DMG whether it satisfies the
background knowledge). For example, one type of back-
ground knowledge commonly considered in the literature
(probably mainly for reasons of simplicity) is causal suf-
ficiency, which can be formalized by Ψ(G) = 1 iff G
contains no bidirected edges, and Ψ(G) = 0 otherwise.
A less trivial example of background knowledge are the
JCI Assumptions, which play a central role in the Joint
Causal Inference framework (Mooij et al., 2020) for per-
forming causal discovery from multiple datasets that cor-
respond with measurements of a system in different con-
texts (for example, a combination of observational and
different interventional datasets). The latter example will
be discussed in more detail in Section 4.3.

4.1 SOUNDNESS AND COMPLETENESS

We first extend the standard notions of soundness and
completeness to a setting that involves cycles and back-
ground knowledge (but no selection bias).

Definition 5 Under background knowledge Ψ, a map-
ping Φ from independence models to DPAGs is called:

• sound if for all DMGs G with Ψ(G) = 1:
Φ(IMσ(G)) contains G;
• arrowhead complete if for all DMGs G with Ψ(G) =

1: if i /∈ ANG̃(j) for any DMG G̃ with Ψ(G̃) = 1
that is σ-Markov equivalent to G, then there is an
arrowhead i←∗ j in Φ(IMσ(G));
• tail complete if for all DMGs G with Ψ(G) = 1: if
i ∈ ANG̃(j) in any DMG G̃ with Ψ(G̃) = 1 that is
σ-Markov equivalent to G, then there is a tail i→ j
in Φ(IMσ(G));
• Markov complete if for all DMGs G1,G2 with

Ψ(G1) = Ψ(G2) = 1: G1 is σ-Markov equivalent to
G2 iff Φ(IMσ(G1)) = Φ(IMσ(G2)).

It is called complete if it is both arrowhead complete and
tail complete.

Note that this reduces to the standard notions (Zhang,
2008b) if Ψ(G) = 1 iff G is acyclic, while it also reduces
to the notions in Theorem 1 if no background knowledge
is used (i.e., Ψ(G) = 1 for all G).

We assume that the background knowledge is compatible
with the acyclification in the following sense:

Assumption 1 For all DMGs G with Ψ(G) = 1, the fol-
lowing three conditions hold:

(i) There exists an acyclification G′ of G with Ψ(G′) =
1;

(ii) For all nodes i, j in G: if i ∈ ANG(j) then there



exists an acyclification G′ of G with Ψ(G′) = 1 such
that i ∈ ANG′(j);

(iii) For all nodes i, j in G: if i /∈ ANG(j) then
i /∈ ANG′(j) for all acyclifications G′ of G with
Ψ(G′) = 1.

For example, the background knowledge of “causal suf-
ficiency” satisfies this assumption, as well as the back-
ground knowledge of “acyclicity”.

The following result is straightforward given all the def-
initions, but is also quite powerful, as it allows us to
directly generalize existing acyclic soundness and com-
pleteness results (for certain background knowledge) to
the σ-separation setting.

Theorem 2 Let Ψ be background knowledge that satis-
fies Assumption 1 and let Φ be a mapping from indepen-
dence models to DPAGs. Then:

(i) If Φ is sound for background knowledge Ψ under
the additional assumption of acyclicity, then Φ is
sound for background knowledge Ψ.

(ii) If Φ is arrowhead (tail) complete for background
knowledge Ψ under the additional assumption of
acyclicity, then Φ is arrowhead (tail) complete for
background knowledge Ψ.

(iii) If Φ is sound and arrowhead complete for back-
ground knowledge Ψ under the additional assump-
tion of acyclicity, then Φ is Markov complete.

In the remainder of this section, we will apply this re-
sult to two types of background knowledge: causal suffi-
ciency, and the JCI assumptions.

4.2 CAUSAL SUFFICIENCY

We consider the (commonly assumed) background
knowledge of “causal sufficiency”. This is formalized
by Ψ(G) = 1 iff DMG G contains no bidirected edges.
For the acyclic setting, the well-known PC algorithm
(Spirtes et al., 2000), adapted with Meek’s orientation
rules (Meek, 1995a), was shown to be sound and com-
plete. It outputs a so-called Complete Partially Directed
Acyclic Graph (CPDAG), which can be interpreted also
as a DPAG (by replacing all undirected edges i −− j by
bicircle edges i ◦−◦ j). Because this particular back-
ground knowledge satisfies Assumption 1, we can apply
Theorem 2 to extend the existing acyclic soundness and
completeness results to the cyclic setting:

Corollary 1 The PC algorithm with Meek’s orientation
rules is sound, arrowhead complete, tail complete and
Markov complete (in the σ-separation setting without se-
lection bias).

We can therefore also apply Propositions 4, 5, to read off

the absence or presence of indirect causal relations from
the DPAG (obtained from the CPDAG) output by the PC
algorithm. Note that the presence or absence of direct
causal relations can be easily read off from the DPAG in
this case as they are in one-to-one correspondence with
directed edges in the DPAG.

4.3 JOINT CAUSAL INFERENCE

Recently, Mooij et al. (2020) proposed FCI-JCI, an ex-
tension of FCI that enables causal discovery from data
measured in different contexts (for example, if observa-
tional data as well as data corresponding to various in-
terventions is available). This is a particular implemen-
tation of the general Joint Causal Inference (JCI) frame-
work. For a detailed treatment, we refer the reader to
(Mooij et al., 2020); here we only give a brief summary
of the JCI assumptions that we need to extend our results
on FCI to FCI-JCI.

Definition 6 (JCI Assumptions) The data-generating
mechanism for a system in a context is described by
a simple SCM M with two types of endogenous vari-
ables: system variables {Xi}i∈I and context variables
{Ck}k∈K. Its graph G(M) has nodes I ∪ K (corre-
sponding to system variables and context variables,
respectively). The following (optional) JCI Assumptions
can be made about the graph G := G(M):

(1) Exogeneity: No system variable causes any context
variable, i.e., ∀k∈K∀i∈I : i→ k /∈ G.

(2) Randomization: No pair of context and system vari-
able is confounded, i.e., ∀k∈K∀i∈I : i↔ k /∈ G.

(3) Genericity: The induced subgraph G(M)K on the
context variables is of the following special form:
∀k 6=k′∈K : k ↔ k′ ∈ G ∧ k → k′ /∈ G.

The following Lemma is key to our extensions to the
cyclic σ-separation setting.

Lemma 3 If subset {1}, {1, 2}, or {1, 2, 3} of the JCI
Assumptions holds for a DMG G, then the same subset of
assumptions holds for any acyclification of G.

This trivially implies that these different combinations of
the JCI Assumptions satisfy Assumption 1. That allows
us to extend the existing acyclic soundness and complete-
ness results for FCI-JCI to the cyclic setting.

FCI-JCI was shown to be sound under the assumption of
acyclicity (Theorem 35, Mooij et al., 2020). This gives
with Theorem 2:

Corollary 2 For the background knowledge consisting
of JCI Assumptions ∅, {1}, {1, 2} or {1, 2, 3}, the
corresponding version of FCI-JCI is sound (in the σ-
separation setting without selection bias).



We can therefore also apply Propositions 5 and 6 to read
off the absence of indirect causal relations and confound-
ing from the DPAG output by the FCI-JCI algorithm, and
Propositions 7 and 8 to read off the absence or pres-
ence of direct causal relations. Furthermore, it is clear
from its definition that all unshielded triples in the DPAG
that FCI-JCI outputs have been oriented according to FCI
rule R0. Therefore, we can also apply Proposition 4 to
read off the presence of indirect causal relations from the
DPAG output by the FCI-JCI algorithm.

Under all three JCI assumptions, stronger results have
been derived. In particular, completeness of FCI-JCI has
been shown (Theorem 38 Mooij et al., 2020) under the
background knowledge of all three JCI Assumptions in
the acyclic setting. This gives with Theorem 2:

Corollary 3 For the background knowledge consisting
of JCI Assumptions {1, 2, 3}, the FCI-JCI algorithm is
arrowhead complete, tail complete and Markov complete
(in the σ-separation setting without selection bias).

An important feature of Joint Causal Inference under
JCI Assumptions {1, 2, 3} is that the direct (non-)targets
of interventions need not be known, but can be discov-
ered from the data. The sufficient condition provided in
Proposition 42 of Mooij et al. (2020) can be easily gen-
eralized to the σ-separation setting as well by observing
that under JCI Assumptions {1, 2, 3}, there cannot be an
inducing walk between a system node and a context node
that is into both, and then applying Proposition 7 and
Proposition 8. For details, see Proposition 12 in Sec-
tion B of the Supplementary Material.

Furthermore, also Proposition 9 that allows one to iden-
tify the absence of cycles can be extended to FCI-JCI
under JCI Assumptions {1, 2, 3}. For details, see Propo-
sition 13 in Section B of the Supplementary Material.

5 DISCUSSION AND CONCLUSION

We have shown that, surprisingly, the FCI algorithm and
several of its variants that were designed for the acyclic
setting need not be adapted but directly apply also in the
cyclic setting under the assumptions of the σ-Markov
property, σ-faithfulness, and the absence of selection
bias. Furthermore, we have provided sufficient condi-
tions to identify causal features from the DPAG output
by FCI and its variants. For convenience, we state this as
a corollary, collecting several of our results.

Corollary 4 Let M be a simple (possibly cyclic) SCM
with graph G(M) and assume that its distribution
PM(X) is σ-faithful w.r.t. the graph G(M). When us-
ing consistent conditional independence tests on an i.i.d.

sample of observational data from the induced distribu-
tion PM(X) ofM, FCI provides a consistent estimate P̂
of the DPAG PFCI(IMσ(G(M))) that represents the σ-
Markov equivalence class of G(M). From the estimated
DPAG P̂ , we obtain consistent estimates for: (i) the ab-
sence/presence of (possibly indirect) causal relations ac-
cording toM via Propositions 4 and 5; (ii) the absence
of confounders according to M via Proposition 6; (iii)
the absence/presence of direct causal relations accord-
ing to M via Propositions 7 and 8; (iv) the absence of
causal cycles according toM via Proposition 9.

A similar conclusion can be formulated for the FCI-JCI
algorithm (see Section B of the Supplementary Material).
Obviously, our results apply also in the acyclic setting
(where σ-separation reduces to d-separation).

One important limitation of the σ-faithfulness assump-
tion is that it excludes the linear and discrete cases. In
pioneering work Richardson (1996b) already proposed a
constraint-based causal discovery algorithm (NL-CCD)
that made use of the σ-separation Markov assump-
tion, while assuming only the d-faithfulness assumption
(which is weaker than the σ-faithfulness assumption). In
future work, we plan to investigate this setting as well, as
well as the possibility of extending our results to a setting
that does not rule out selection bias.
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Bongers, S., Forré, P., Peters, J., Schölkopf, B., and Mooij,
J. M. (2020). Foundations of structural causal mod-
els with cycles and latent variables. arXiv.org preprint,
arXiv:1611.06221v3 [stat.ME].

Bongers, S. and Mooij, J. M. (2018). From random differential
equations to structural causal models: the stochastic case.
arXiv.org preprint, arXiv:1803.08784v2 [cs.AI].

Borboudakis, G., Triantafillou, S., and Tsamardinos, I. (2012).
Tools and algorithms for causally interpreting directed edges



in maximal ancestral graphs. In Proceedings of the Sixth Eu-
ropean Workshop on Probabilistic Graphical Models (PGM
2012), pages 35–42.

Claassen, T., Mooij, J. M., and Heskes, T. (2013). Learning
sparse causal models is not NP-hard. In Proceedings of the
29th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-13), pages 172–181.

Colombo, D., Maathuis, M. H., Kalisch, M., and Richardson,
T. S. (2012). Learning high-dimensional directed acyclic
graphs with latent and selection variables. The Annals of
Statistics, 40(1):294–321.

Cooper, G. F. (1997). A simple constraint-based algorithm
for efficiently mining observational databases for causal
relationships. Data Mining and Knowledge Discovery,
1(2):203–224.
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A PRELIMINARIES

In this section of the Supplementary Material, we briefly
state all required definitions, notations and results from
the literature to make the paper more self-contained.

A.1 GRAPHS

Here we briefly discuss various types of graphs (directed
mixed graphs, maximal ancestral graphs, and partial
ancestral graphs) and their properties and relationships
from the causal discovery literature. For more details,
the reader may consult the relevant literature (Spirtes
et al., 2000; Richardson and Spirtes, 2002; Zhang, 2006,
2008b,a).

A.1.1 DIRECTED MIXED GRAPHS (DMGs)

A Directed Mixed Graph (DMG) is a graph G =
〈V, E ,F〉 with nodes V and two types of edges: directed
edges E ⊆ {(i, j) : i, j ∈ V, i 6= j}, and bidirected
edges F ⊆ {{i, j} : i, j ∈ V, i 6= j}. We will denote
a directed edge (i, j) ∈ E as i → j or j ← i, and call i
a parent of j. We denote all parents of j in the graph G
as PAG(j) := {i ∈ V : i → j ∈ E}. We do not allow
for self-cycles i → i here, but multiple edges (at most
one of each type, i.e., at most three) between any pair of
distinct nodes are allowed. We will denote a bidirected
edge {i, j} ∈ F as i ↔ j or j ↔ i. Two nodes i, j ∈ V
are called adjacent in G if if i→ j ∈ E or i← j ∈ E or
i↔ j ∈ F .

A walk between two nodes i, j ∈ V is a tuple
〈i0, e1, i1, e2, i3, . . . , en, in〉 of alternating nodes and
edges in G (n ≥ 0), such that all i0, . . . , in ∈ V , all
e1, . . . , en ∈ E∪F , starting with node i0 = i and ending
with node in = j, and such that for all k = 1, . . . , n, the
edge ek connects the two nodes ik−1 and ik in G. If the
walk contains each node at most once, it is called a path.
A trivial walk (path) consists just of a single node and
zero edges. A directed walk (path) from i ∈ V to j ∈ V
is a walk (path) between i and j such that every edge ek
on the walk (path) is of the form ik−1 → ik, i.e., every
edge is directed and points away from i. By repeatedly
taking parents, we obtain the ancestors of j: ANG(j) :=
{i ∈ V : i = i0 → i1 → · · · → in = j in G}. Similarly,
we define the descendants of i: DEG(i) := {j ∈ V : i =
i0 → i1 → · · · → in = j in G}. In particular, each node
is ancestor and descendant of itself. A directed cycle is a
directed path from i to j such that in addition, j → i ∈ E .
An almost directed cycle is a directed path from i to j
such that in addition, j ↔ i ∈ F . All nodes on directed
cycles passing through i ∈ V together form the strongly
connected component SCG(i) := ANG(i) ∩ DEG(i) of
i. We extend the definitions to sets I ⊆ V by setting

ANG(I) := ∪i∈IANG(i), and similarly for DEG(I) and
SCG(I).

A directed mixed graph G is acyclic if it does not con-
tain any directed cycle, in which case it is known as
an Acyclic Directed Mixed Graph (ADMG). A directed
mixed graph that does not contain bidirected edges is
known as a Directed Graph (DG). If a directed mixed
graph does not contain bidirected edges and is acyclic, it
is called a Directed Acyclic Graph (DAG).

A node ik on a walk (path) π =
〈i0, e1, i1, e2, i3, . . . , en, in〉 in G is said to form a
collider on π if it is a non-endpoint node (1 ≤ k < n)
and the two edges ek, ek+1 meet head-to-head on their
shared node ik (i.e., if the two subsequent edges are
of the form ik−1 → ik ← ik+1, ik−1 ↔ ik ← ik+1,
ik−1 → ik ↔ ik+1, or ik−1 ↔ ik ↔ ik+1). Oth-
erwise (that is, if it is an endpoint node, i.e., k = 0
or k = n, or if the two subsequent edges are of
the form ik−1 → ik → ik+1, ik−1 ← ik ← ik+1,
ik−1 ← ik → ik+1, ik−1 ↔ ik → ik+1, or
ik−1 ← ik ↔ ik+1), ik is called a non-collider on π.

The important notion of d-separation was first proposed
by Pearl (1986) in the context of DAGs:

Definition 7 (d-separation) We say that a walk
〈i0 . . . in〉 in DMG G = 〈V, E ,F〉 is d-blocked by
C ⊆ V if:

(i) its first node i0 ∈ C or its last node in ∈ C, or
(ii) it contains a collider ik /∈ ANG(C), or

(iii) it contains a non-collider ik ∈ C.

If all paths in G between any node in set A ⊆ V and
any node in set B ⊆ V are d-blocked by a set C ⊆ V ,
we say that A is d-separated from B by C, and we write
A⊥dG B |C.

In the general cyclic case, the notion of d-separation is
too strong, as was already pointed out by Spirtes (1995).
A solution is to replace it with a non-trivial generaliza-
tion of d-separation, known as σ-separation:

Definition 8 (σ-separation (Forré and Mooij, 2017))
We say that a walk 〈i0 . . . in〉 in DMG G = 〈V, E ,F〉 is
σ-blocked by C ⊆ V if:

(i) its first node i0 ∈ C or its last node in ∈ C, or
(ii) it contains a collider ik /∈ ANG(C), or

(iii) it contains a non-collider ik ∈ C that points to a
neighboring node on the walk in another strongly
connected component (i.e., ik−1 → ik → ik+1

or ik−1 ↔ ik → ik+1 with ik+1 /∈ SCG(ik),
ik−1 ← ik ← ik+1 or ik−1 ← ik ↔ ik+1 with
ik−1 /∈ SCG(ik), or ik−1 ← ik → ik+1 with
ik−1 /∈ SCG(ik) or ik+1 /∈ SCG(ik)).



If all paths in G between any node in set A ⊆ V and
any node in set B ⊆ V are σ-blocked by a set C ⊆ V ,
we say that A is σ-separated from B by C, and we write
A⊥σG B |C.

For a DMG G, define its d-independence model to be

IMd(G) := {〈A,B,C〉 : A,B,C ⊆ V, A
d

⊥
G
B |C},

i.e., the set of all d-separations entailed by the graph, and
its σ-independence model to be

IMσ(G) := {〈A,B,C〉 : A,B,C ⊆ V, A
σ

⊥
G
B |C},

i.e., the set of all σ-separations entailed by the graph.
For ADMGs, σ-separation is equivalent to d-separation,
and hence, if G is acyclic, then IMd(G) = IMσ(G).
We call two DMGs G1 and G2 σ-Markov equivalent
if IMσ(G1) = IMσ(G2), and d-Markov equivalent if
IMd(G1) = IMd(G2).

A.1.2 DIRECTED MAXIMAL ANCESTRAL
GRAPHS (DMAGs)

The following graphical notion will be necessary for the
definition of DMAGs.4

Definition 9 Let G = 〈V, E ,F〉 be an acyclic directed
mixed graph (ADMG). An inducing path5 between two
nodes i, j ∈ V is a path in G between i and j on which
every node (except for the endnodes) is a collider on the
path and an ancestor in G of an endnode of the path.

DMAGs can now be defined as follows (Zhang, 2008a):

Definition 10 A directed mixed graph G = 〈V, E ,F〉 is
called a directed maximal ancestral graph (DMAG) if all
of the following conditions hold:

1. Between any two different nodes there is at most one
edge, and there are no self-cycles;

2. The graph contains no directed or almost directed
cycles (“ancestral”);

3. There is no inducing path between any two non-
adjacent nodes (“maximal”).

With the following procedure from Richardson and
Spirtes (2002), one can define the DMAG induced by an
ADMG:

Definition 11 Let G = 〈V, E ,F〉 be an ADMG. The di-
rected maximal ancestral graph induced by G is denoted

4We propose an extension of this notion for DMGs in Defi-
nition 1.

5This was called “primitive inducing path” in (Richardson
and Spirtes, 2002).

DMAG(G) and is defined as DMAG(G) = 〈Ṽ, Ẽ , F̃〉
such that Ṽ = V and for each pair u, v ∈ V with u 6= v,
there is an edge in DMAG(G) between u and v if and
only if there is an inducing path between u and v in G,
and in that case the edge in DMAG(G) connecting u and
v is: 

u→ v if u ∈ ANG(v),

u← v if v ∈ ANG(u),

u↔ v if u 6∈ ANG(v) and v 6∈ ANG(u).

This construction preserves the (non-)ancestral relations
as well as the d-separations/connections. We sometimes
identify a DMAG H with the set of ADMGs G that in-
duce H, i.e., such that DMAG(G) = H. For a DMAG
H, we define its independence model to be

IM(H) := {〈A,B,C〉 : A,B,C ⊆ V, A
d

⊥
H
B |C},

i.e., the set of all d-separations entailed by the DMAG.
We call two DMAGs H1 and H2 Markov equivalent if
IM(H1) = IM(H2).

A.1.3 DIRECTED PARTIAL ANCESTRAL
GRAPHS (DPAGs)

It is often convenient when performing causal reasoning
to be able to represent a set of DMAGs in a compact
way. For this purpose, partial ancestral graphs (PAGs)
have been introduced (Zhang, 2006). Again, since we are
assuming no selection bias for simplicity, we will only
discuss directed PAGs (DPAGs), that is, PAGs without
undirected or circle-tail edges, i.e., edges of the form {−−
,−−◦, ◦−−}.

Definition 12 We call a mixed graph G = 〈V, E〉 with
nodes V and edges E of the types {→,←,←◦,↔, ◦−◦
, ◦→} a directed partial ancestral graph (DPAG) if all of
the following conditions hold:

1. Between any two different nodes there is at most one
edge, and there are no self-cycles;

2. The graph contains no directed or almost directed
cycles (“ancestral”);

3. There is no inducing path between any two non-
adjacent nodes (“maximal”).

We extend the definitions of (directed) walks, (directed)
paths and colliders for directed mixed graphs to apply
also to DPAGs. Edges of the form i ← j, i ←◦ j, i ↔ j
are called into i, and similarly, edges of the form i →
j, i ◦→ j, i ↔ j are called into j. Edges of the form
i→ j and j ← i are called out of i.

Given a DMAG or DPAG, its induced skeleton is an undi-
rected graph with the same nodes and with an edge be-



tween any pair of nodes if and only if the two nodes are
adjacent in the DMAG or DPAG.

One often identifies a DPAG with the set of all DMAGs
that have the same skeleton as the DPAG, have an arrow-
head (tail) on each edge mark for which the DPAG has an
arrowhead (tail) at that corresponding edge mark, and for
each circle in the DPAG, have either an arrowhead or a
tail at the corresponding edge mark. We then say that the
DPAG contains these DMAGs. Since each ADMG in-
duces a unique DMAG, we can say that a DPAG contains
an ADMG if and only if it contains the DMAG induced
by it.6

We also make use of the following definition (Zhang,
2008b):

Definition 13 A path v0, e1, v1, . . . , vn between nodes
v0 and vn in a DPAG P is called a possibly directed
path from v0 to vn if for each i = 1, . . . , n, the edge ei
between vi−1 and vi is not into vi−1 (i.e., is of the form
vi−1 ◦−◦ vi, vi−1 ◦→ vi, or vi−1 → vi). The path is
called uncovered if every subsequent triple is unshielded,
i.e., vi and vi−2 are not adjacent in P for i = 2, . . . , n.

A.2 FAST CAUSAL INFERENCE (FCI)

When given as input an independence model IM(H) of a
DMAGH, FCI outputs a DPAG PFCI(IM(H)) that con-
tains H and is maximally informative (Zhang, 2008b),
i.e., each edge mark that is identifiable from the indepen-
dence model of H is oriented as such in the DPAG. This
DPAG is often referred to as the complete DPAG forH.

The following key result seems to be generally known
in the field, although we could not easily find a proof in
the literature.7 The proof we provide here is due to Jiji
Zhang [private communication].

Proposition 11 Two MAGsH1,H2 are d-Markov equiv-
alent if and only if PFCI(IMd(H1)) = PFCI(IMd(H2)).

Proof. We only give a proof for the “if” implication, the
“only if” implication being obvious. Ali et al. (2009)
showed that two MAGs are Markov equivalent if and
only if they have the same skeletons and colliders with
order. This implies that colliders with order in any MAG
are invariant in the corresponding Markov equivalence
class and, by the soundness and arrowhead completeness
of FCI, these will appear as colliders in the correspond-
ing PAG. Consider two MAGs H1 and H2 that are not

6In Definition 2, we propose to extend this to the notion that
a DPAG contains a DMG.

7For DMAGs and POIPGs, this was already known for
an earlier version of FCI; see Corollary 6.4.1 in Spirtes et al.
(2000) and the proof in Spirtes and Verma (1992).

Markov equivalent. If they have different skeletons, their
corresponding PAGs are not identical. If they do have the
same skeletons, then there must be at least one collider
with order in H1 that is not a collider with order in H2,
or vice versa. By Lemma 3.13 in Ali et al. (2009), this
would imply that there is at least one collider with order
in H1 that is not a collider in H2, or vice versa. Hence,
because of the soundness and arrowhead completeness
of FCI, their corresponding PAGs are not identical. �

Another important property of the FCI algorithm that we
use is the following. It was stated in a different but equiv-
alent formulation by Ali et al. (Lemma 4.1, 2005).

Lemma 4 (Lemma A.1 in (Zhang, 2008b)) LetH be a
MAG and denote by P = PFCI(IM(H)) the correspond-
ing complete PAG output by FCI. Then for any three dis-
tinct vertices a, b, c: if a ∗→ b ◦−−∗ c in P , then a ∗→ c in
P; furthermore, if a → b ◦−−∗ c in P , then a ↔ c is not
in P .

Since this property is about arrowhead completeness, it
already holds for the DPAG constructed in the first stage
of the FCI algorithm, after running the arrowhead orien-
tation rules R0–R4, but before running the tail orienta-
tion rulesR5–R10.

A.3 STRUCTURAL CAUSAL MODELS (SCMs)

In this subsection we state some of the basic definitions
and results regarding Structural Causal Models. Struc-
tural Causal Models (SCMs), also known as Structural
Equation Models (SEMs), were introduced a century ago
by (Wright, 1921) and popularized in AI by Pearl (2009).
We follow here the treatment in Bongers et al. (2020) be-
cause it deals with cycles in a rigorous way.

Definition 14 A Structural Causal Model (SCM) is a tu-
pleM = 〈I,J ,X ,E,f ,PE〉 of:

(i) a finite index set I for the endogenous variables in
the model;

(ii) a finite index set J for the latent exogenous vari-
ables in the model (disjoint from I);

(iii) a product of standard measurable spaces X =∏
i∈I Xi, which define the domains of the endoge-

nous variables;
(iv) a product of standard measurable spaces E =∏

j∈J Ej , which define the domains of the exoge-
nous variables;

(v) a measurable function f : X ×E → X , the causal
mechanism;

(vi) a product probability measure PE =
∏
j∈J PEj on

E specifying the exogenous distribution.



Usually, the components of f do not depend on all vari-
ables, which is formalized by:

Definition 15 Let M be an SCM. We call i ∈ I ∪ J
a parent of k ∈ I if and only if there does not exist a
measurable function f̃k : X I\{i} × EJ\{i} → Xk such
that for PE -almost every e and for all x ∈ X , xk =
f̃k(xI\{i}, eJ\{i}) ⇐⇒ xk = fk(x, e).

This definition allows us to define the directed mixed
graph associated to an SCM (which corresponds with the
DMG in Figure 1, our starting point for this work):

Definition 16 Let M be an SCM. The induced graph
of M, denoted G(M), is defined as the directed mixed
graph with nodes I, directed edges i1 → i2 iff i1 is a
parent of i2, and bidirected edges i1 ↔ i2 iff there exists
j ∈ J such that j is parent of both i1 and i2.

If G(M) is acyclic, we call the SCM M acyclic, oth-
erwise we call the SCM cyclic. If G(M) contains no
bidirected edges, we call the endogenous variables in the
SCMM causally sufficient.

A pair of random variables (X,E) is called a solution
of the SCM M if X = (Xi)i∈I with Xi ∈ Xi for all
i ∈ I, E = (Ej)j∈J with Ej ∈ Ej for all j ∈ J , the
distribution P(E) is equal to the exogenous distribution
PE , and the structural equations:

Xi = fi(X,E) a.s.

hold for all i ∈ I.

For acyclic SCMs, solutions exist and have a unique dis-
tribution that is determined by the SCM. This is not gen-
erally the case in cyclic SCMs, as these could have no
solution at all, or could have multiple solutions with dif-
ferent distributions.

Definition 17 An SCM M is said to be uniquely solv-
able w.r.t. O ⊆ I if there exists a measurable mapping
gO : X (PAG(M)(O)\O)∩I × E PAG(M)(O)∩J → XO such
that for PE -almost every e for all x ∈ X :

xO = gO(x(PAG(M)(O)\O)∩I , ePAG(M)(O)∩J )

⇐⇒ xO = fO(x, e).

Loosely speaking: the structural equations for O have a
unique solution for XO in terms of the other variables
appearing in those equations. If M is uniquely solv-
able with respect to I (in particular, this holds if M is
acyclic), then it induces a unique observational distribu-
tion PM(X).

A.3.1 SIMPLE STRUCTURAL CAUSAL
MODELS

In this work we restrict attention to a particular subclass
of SCMs that has many convenient properties:

Definition 18 An SCM M is called simple if it is
uniquely solvable with respect to each subset O ⊆ I.

All acyclic SCMs are simple. The class of simple SCMs
can be thought of as a generalization of acyclic SCMs
that allows for (sufficiently weak) cyclic causal rela-
tions, but preserves many of the convenient properties
that acyclic SCMs have. Simple SCMs provide a special
case of the more general class of modular SCMs (Forré
and Mooij, 2017). One of the key aspects of SCMs—
which we do not discuss here in detail because we do not
make use of it in this work—is their causal semantics,
which is defined in terms of perfect interventions.

Simple SCMs have the following convenient properties.
A simple SCM induces a unique observational distribu-
tion. The class of simple SCMs is closed under marginal-
izations and perfect interventions. Without loss of gen-
erality, one can assume that simple SCMs have no self-
cycles. The graph of a simple SCM also has a straight-
forward causal interpretation:

Definition 19 Let M be a simple SCM. If i → j ∈
G(M) we call i a direct cause of j according toM. If
there exists a directed path i → · · · → j ∈ G(M), i.e.,
if i ∈ ANG(M)(j), then we call i a cause of j according
toM. If there exists a bidirected edge i ↔ j ∈ G(M),
then we call i and j confounded according toM.

The same graph G(M) of a simple SCM M also rep-
resents the conditional independences that must hold in
the observational distribution PM(X) ofM. Forré and
Mooij (2017) proved a Markov property for the general
class of modular SCMs, but we formulate it here only for
the special case of simple SCMs:

Theorem 3 (σ-Separation Markov Property) For any
solution (X,E) of a simple SCMM, and for all subsets
A,B,C ⊆ I of the endogenous variables:

A
σ

⊥
G(M)

B |C =⇒ XA ⊥⊥
PM(X)

XB |XC .

In certain cases, amongst which the acyclic case, the fol-
lowing stronger Markov property holds:

Theorem 4 (d-Separation Markov Property) For any
solution (X,E) of an acyclic SCMM, and for all sub-
sets A,B,C ⊆ I of the endogenous variables:

A
d

⊥
G(M)

B |C =⇒ XA ⊥⊥
PM(X)

XB |XC .



A.3.2 FAITHFULNESS

For a simple SCMM with endogenous index set I and
observational distribution PM(X), we define its inde-
pendence model to be

IM(M) := {〈A,B,C〉 : A,B,C ⊆ I,
XA ⊥⊥

PM
XB |XC},

i.e., the set of all (conditional) independences that hold
in its (observational) distribution.

The typical starting point for constraint-based ap-
proaches to causal discovery from observational data is
to assume that the data is modelled by an (unknown)
SCMM, such that its observational distribution PM(X)
exists and satisfies a Markov property with respect to its
graph G(M). In other words, IM(M) ⊇ IMd(G(M))
in the acyclic case, and more generally, IM(M) ⊇
IMσ(G(M)) for simple SCMs.

In addition, one usually assumes the faithfulness assump-
tion to hold (Spirtes et al., 2000; Pearl, 2009), i.e., that
the graph explains all conditional independences present
in the observational distribution. We distinguish the d-
faithfulness assumption:

IM(M) ⊆ IMd(G(M))

and the σ-faithfulness assumption:8

IM(M) ⊆ IMσ(G(M)).

Although for d-faithfulness there are some results that
this assumption holds generically (Meek, 1995b) for cer-
tain parameterizations of acyclic SCMs, no such results
are known for σ-faithfulness, although it has been con-
jectured (Spirtes, 1995) that at least weak completeness
results can be shown.

B JOINT CAUSAL DISCOVERY

The space constraints forced us to move some mate-
rial on FCI-JCI into the Supplementary Material, which
would have been more appropriate in the main text. We
provide these in this section.

Proposition 12 Let G be a DMG that satisfies JCI As-
sumptions {1, 2, 3}. Let P = PFCIJCI(IMσ(G)) denote
the DPAG output by the corresponding version of FCI-
JCI. Let i ∈ K, j ∈ I. Then:

1. If i is not adjacent to j in P , i→ j is not in G.

8This notion is called “collapsed graph faithful” in
Richardson (1996b).

2. If i → j in P , and for all system nodes k ∈ I s.t.
i → k in P and k ◦−◦ j or k ◦→ j or k → j in
P , the edge k → j is definitely visible in the DPAG
P∗ obtained from P by replacing the edge between
k and j by k → j, then i→ j is present in G.

Proposition 13 Let G be a DMG that satisfies JCI As-
sumptions {1, 2, 3}. Let P = PFCIJCI(IMσ(G)) denote
the complete DPAG output by the corresponding version
of FCI-JCI. Let i 6= j be two nodes in P . If j ∈ SCG(i),
then i ◦−◦ j in P , and for all nodes k 6= i, j: k → i in
P iff k → j in P , and k ↔ i in P iff k ↔ j in P , and
k ◦→ i in P iff k ◦→ j in P .

The following corollary collects our results on FCI-JCI.

Corollary 5 Let M be a simple (possibly cyclic) SCM
with graph G(M) that satisfies JCI Assumptions ∅,
{1}, {1, 2} or {1, 2, 3} and assume that its distribution
PM(X,C) is σ-faithful w.r.t. the graph G(M). When
using consistent conditional independence tests on an
i.i.d. sample of data from the induced joint distribution
PM(X,C) of M, FCI-JCI provides a consistent esti-
mate P̂ of the DPAG P := PFCIJCI(IMσ(G(M))), which
contains G. From the estimated DPAG P̂ , we obtain con-
sistent esimates for: (i) the absence/presence of (possibly
indirect) causal relations according to M via Proposi-
tions 4 and 5; (ii) the absence of confounders according
toM via Proposition 6; (iii) the absence/presence of di-
rect causal relations according toM via Proposition 8.

In the special case that G(M) satisfies all three JCI As-
sumptions {1, 2, 3}, the DPAG P̂ estimated by FCI-JCI
also provides consistent estimates for: (iv) the direct in-
tervention targets and non-targets according to M via
Proposition 12; (v) the absence of causal cycles accord-
ing to M via Proposition 13. Furthermore, the DPAG
P := PFCIJCI(IMσ(G(M))) characterizes the DMGs
that satisfy JCI Assumptions {1, 2, 3} and are σ-Markov
equivalent to G.

C PROOFS

In this last section of the Supplementary Material, we
provide the proofs for our claims.

Proposition 1 Let G = 〈V, E ,F〉 be a DMG and i, j two
distinct vertices in G. Then the following are equivalent:

(i) There is an inducing path in G between i and j;
(ii) There is an inducing walk in G between i and j;

(iii) i 6⊥σG j |Z for all Z ⊆ V \ {i, j}.

Proof of Proposition 1 The proof is similar to that of
Theorem 4.2 in Richardson and Spirtes (2002).



(i) =⇒ (ii) is trivial.

(ii) =⇒ (iii): Assume the existence of an inducing walk
between i and j in G. Let Z ⊆ V \ {i, j}. Consider a
walk µ in G between i and j with the fewest number of
colliders, with the property that all colliders on µ are in
ANG({i, j} ∪Z), and each non-endpoint non-collider on
µ is not in Z or points only to nodes in the same strongly
connected component of G. Such a walk must exist (be-
cause the inducing walk satisfies that property). We now
show that all colliders on µ must be in ANG(Z). Sup-
pose on the contrary the existence of a collider k on µ
that is not ancestor of Z. It is either ancestor of i or of
j, by assumption. Without loss of generality, assume the
latter. Then there is a directed path π from k to j in G
that does not pass through any node of Z. Then the sub-
walk of µ between i and k can be concatenated with the
directed path π into a walk between i and j that has the
property, but has fewer colliders than µ: a contradiction.
Therefore, µ is σ-open given Z. Hence, i and j are σ-
connected given Z.

(iii) =⇒ (i): Suppose that i and j are σ-connected given
any Z ⊆ V \{i, j}. In particular, i and j are σ-connected
given Z∗ = ANG({i, j}) \ {i, j}. Let π be a path be-
tween i and j that is σ-open given Z∗. We show that π
must be an inducing path. First, all colliders on π are in
ANG(Z∗) and hence in ANG({i, j}). Second, let k be any
non-endpoint non-collider k on π. Then there must be a
directed subwalk of π starting at k that ends either at the
first collider on π next to k or at an end node of π, and
hence k must be in Z∗. Since π is σ-open given Z∗, k
can only point to nodes in the same strongly connected
component of G. Hence, all non-endpoint non-colliders
on π can only point to nodes in the same strongly con-
nected component of G. �

Proposition 2 For any DMG G and any acyclification
G′ of G, IMσ(G) = IMσ(G′) = IMd(G′).

Proof of Proposition 2 This follows from Theorem
2.8.3 in (Forré and Mooij, 2017). �

Proposition 3 Let G be a DMG and i, j two nodes in G.

(i) If i ∈ ANG(j) then there exists an acyclification G′
of G with i ∈ ANG′(j);

(ii) If i /∈ ANG(j) then i /∈ ANG′(j) for all acyclifica-
tions G′ of G;

(iii) There is an inducing path between i and j in G if
and only if there is an inducing path between i and
j in G′ for any acyclification G′ of G.

Proof of Proposition 3 (i) If i ∈ ANG(j), then there ex-
ists a directed path from i to j in G. Any such directed
path visits each strongly connected component of G at

most once. We can choose an acyclification G′ of G with
a suitably chosen DAG on each strongly connected com-
ponent, in which we can take the shortcut k → l instead
of each longest subpath k → u1 → · · · → un → l that
consists entirely of nodes within a single strongly con-
nected component of G. This yields a directed path from
i to j in G′.

(ii) Let G′ be an acyclification of G. Each directed
edge k → l in G′ is either in G or corresponds with
k ∈ ANG(l). Hence all ancestral relations in G′ must
be present in G as well.

(iii) Follows directly from the separation properties of
inducing paths and Proposition 2. �

Theorem 1 In the σ-separation setting (but without se-
lection bias), FCI is

(i) sound: for all DMGs G, PFCI(IMσ(G)) contains G;
(ii) arrowhead complete: for all DMGs G: if i /∈

ANG̃(j) for any DMG G̃ that is σ-Markov equiv-
alent to G, then there is an arrowhead i ←∗ j in
PFCI(IMσ(G));

(iii) tail complete: for all DMGs G, if i ∈ ANG̃(j) in
any DMG G̃ that is σ-Markov equivalent to G, then
there is a tail i→ j in PFCI(IMσ(G));

(iv) Markov complete: for all DMGs G1 and G2, G1 is
σ-Markov equivalent to G2 iff PFCI(IMσ(G1)) =
PFCI(IMσ(G2)).

Proof of Theorem 1 To prove soundness, let G be
a DMG and let P = PFCI(IMσ(G)). The acyclic
soundness of FCI means that for all ADMGs G′,
PFCI(IMd(G′)) contains G′. Hence, by Proposition 2,
P contains G′ for all acyclifications G′ of G. But then P
must contain G:

• if two vertices i, j are adjacent in P then there is an
inducing path between i, j in any acyclification of
G, which holds if and only if there is an inducing
path between i, j in G (Proposition 3(iii);

• if i ∗→ j in P , then j /∈ ANG′(i) for any acycli-
fication G′ of G, and hence j /∈ ANG(i) (Proposi-
tion 3(i));

• if i → j in P , then i ∈ ANG′(j) for all acyclifi-
cations G′ of G, and hence i ∈ ANG(j) (Proposi-
tion 3(ii)).

To prove arrowhead completeness, let G be a DMG and
suppose that i ∈ ANG̃(j) in any DMG G̃ that is σ-Markov
equivalent to G. Since Gacy is σ-Markov equivalent to
G, this implies in particular that for all ADMGs G̃ that
are d-Markov equivalent to Gacy, i ∈ ANG̃(j). Because



of the acyclic arrowhead completeness of FCI, there
must be an arrowhead i ←∗ j in PFCI(IMd(Gacy)) =
PFCI(IMσ(G)). Tail completeness is proved similarly.

To prove Markov completeness: Proposition 2 im-
plies both IMσ(G1) = IMd(Gacy1 ) and IMσ(G2) =
IMd(Gacy2 ). From the acyclic Markov completeness of
FCI (Proposition 11 in the Supplementary Material), it
then follows that Gacy1 must be d-Markov equivalent to
Gacy2 , and hence G1 must be σ-Markov equivalent to G2.

Alternatively, the statement of this theorem can be seen
to be a special case of Theorem 2, applied with the triv-
ial background knowledge Ψ(G) = 1 for all DMGs
G, to Φ : G 7→ PFCI(IMσ(G)), combined with the
known (acyclic) soundness and completeness results of
FCI (Zhang, 2008b). Note here that the trivial back-
ground knowledge Ψ(G) = 1 satisfies Assumption 1 as
follows immediately from Proposition 3. �

Proposition 4 Let G be a DMG, and let P be a DPAG
that contains G, and such that all unshielded triples in
P have been oriented according to FCI ruleR0 (Zhang,
2008b) using IMσ(G). For two nodes i 6= j ∈ P: If

• there is a directed path from i to j in P , or
• there exist uncovered possibly directed paths (see

Definition 13) from i to j in P of the form i, u, . . . , j
and i, v, . . . , j such that u, v are distinct non-
adjacent nodes in P ,

then i ∈ ANG(j), i.e., i is ancestor of j according to G.

Proof of Proposition 4 If there is a directed path from i
to j in P , say v1 → · · · → vn with v1 = i and vn = j,
then vm ∈ ANG(vm+1) for all m = 1, . . . , n− 1. Hence
i ∈ ANG(j).

Otherwise, assume that there exist uncovered possibly
directed paths from i to j in P of the form i, u, . . . , j and
i, v, . . . , j such that u, v are distinct and non-adjacent
in P . If i ∈ ANG(u), the path i, u, . . . , j must actu-
ally correspond with a directed path from i to j in G,
because otherwise it would contain unshielded colliders
that were not oriented, contradicting the assumptions. If
i /∈ ANG(u) instead, one obtains that i ∈ ANG(v) to
avoid an unshielded collider u ∗→ i ←∗ v in P that was
not oriented. Hence the path i, v, . . . , j must correspond
with a directed path from i to j in G, because other-
wise it would contain unshielded colliders that were not
oriented, contradicting the assumptions. In both cases,
i ∈ ANG(j). �

Proposition 5 Let G be a DMG, and let P be a DPAG
that contains G. For two nodes i 6= j ∈ P: if there is no
possibly directed path from i to j in P then i /∈ ANG(j).

Proof of Proposition 5 If i ∈ ANG(j), then the directed
path from i to j must correspond with a possibly directed
path in P . �

Lemma 1 Let P be a DPAG that contains DMG G, and
let k ∗→ i be an edge in P that is into i. Then there
exists an inducing walk in G between k and i that is into
i. If k ↔ i in P , then there exists an inducing walk in G
between k and i that is both into k and into i.

Proof of Lemma 1 If k ∗→ i in P , then there exists
an inducing walk between k and i in G because k and
i are adjacent in P and P contains G. If this inducing
walk were out of i, it would be of the form k . . . ∗→
un ← un−1 ← · · · ← u1 ← i, where un is the first
collider on the walk that one encounters when following
the directed edges out of i. un must be ancestor of i or k
in G, and it cannot be ancestor of k (because then iwould
be ancestor of k, contradicting the orientation k ∗→ i in
P), hence it must be ancestor of i. Thus there exists a
walk k . . . ∗→ un → · · · → i in G where we replaced
the subwalk un ← un−1 ← · · · ← i by a directed path
from un to i. It is clear that this is an inducing path in G
between k and i that is into i.

If k ↔ i in P , then by similar reasoning, we obtain an
inducing path in G between k and i that is into k as well
as into i. �

Lemma 2 Let P be a DPAG, and i→ j a directed edge
in P . If i → j is definitely visible in P , then for all
DMGs G contained in P , there exists no inducing walk
between i and j in G that is into i.

Proof of Lemma 2 Suppose G is a DMG contained in
P . Then i ∈ ANG(j) and there exists an inducing walk
between i and j in G. We will prove the contrapositive.
Assume that there exists an inducing walk in G between
i and j that is into i. Let k be another vertex in P .

If k ∗→ i in P , then there is an inducing walk between k
and i in G that is into i by Lemma 1.

If there is a collider path π in P from k to i that is into
i and such that every non-endpoint vertex on the walk is
parent of j in P , then there is an inducing walk between
k and i in G that is into i. For each pair of adjacent ver-
tices (vi, vi+1) on π, Lemma 1 gives the existence of an
inducing walk in G between vi and vi+1 that is into vi+1,
and also into vi unless possibly vi = k. Because each
vertex other than k on π is ancestor in G of j, all these
inducing walks can be concatenated into one inducing
walk in G between k and i that is into i.

Concatenating the inducing walk between k and i that is
into i with the inducing walk between i and j that is into



i we obtain an inducing walk between k and j (note that
i becomes a collider that is ancestor of j) in G. Hence
k and j are adjacent in P . Since this holds for all k, the
directed edge i→ j in P cannot be definitely visible. �

Proposition 6 Let P be a DMAG and G be a DMG con-
tained in P . Let i 6= j be two nodes in P . If i and j are
not adjacent in P , or if there is a directed edge i → j
in P that is definitely visible in P , then i ↔ j is absent
from G.

Proof of Proposition 6 If i and j are not adjacent in P ,
then there is no inducing path between i and j in G by
assumption, and in particular, this rules out the presence
of the bidirected edge i↔ j in G.

If i → j in P is definitely visible, by Lemma 2, there
cannot be a bidirected edge i↔ j in any DMG contained
in P . �

Proposition 7 Let P be a DPAG that contains a DMG
G. For two nodes i 6= j in P , if i ←∗ j in P , or i and j
are not adjacent in P , then i→ j is not present in G.

Proof of Proposition 7 If i←∗ j in P , then i /∈ ANG(j)
and hence i→ j cannot be present in G. If i and j are not
adjacent in P , then i→ j cannot be present in G because
this would be an inducing path between i and j. �

Proposition 8 Let P be a DPAG that contains a DMG
G. For two nodes i 6= j in P , if i→ j in P and:

(i) there does not exist a possibly directed path from i
to j in P that avoids the edge i→ j, or

(ii) if there is no inducing walk between i and j in
G that is both into i and j (for example, because
i → j is definitely visible in P), and for all ver-
tices k such that there is a possibly directed path
i ∗−−∗ k ∗−−∗ j from i to j in P , the edge k → j is
definitely visible in the DPAG P∗ obtained from P
by replacing the edge between k and j by k → j,

then i→ j is present in G.

Proof of Proposition 8 (i) Suppose i → j in P . We
prove the contrapositive. Assume i → j is absent from
G. Because i ∈ ANG(j) by assumption, there must be a
directed path from i to j in G that does not contain the
edge i → j. This corresponds with a possibly directed
path in P that avoids the edge i→ j.

(ii) Suppose i→ j in P . There must be an inducing walk
π between i and j in G that is into j by Lemma 1. Each
collider on π is ancestor of j (because it is ancestor of i
or j by definition, and i is ancestor of j). By assumption
(or by Lemma 2 if i → j is definitely visible in P), this
inducing walk must be out of i.

We now show that π cannot contain any colliders under
the assumptions made. For the sake of contradiction, as-
sume that π contained one or more colliders. Denote the
collider closest to i on π by k. Since π is out of i and k
is the collider on π closest to i, π must start as a directed
walk i → · · · → k. This is an inducing walk between
i and k, and since i ∈ ANG(k), it corresponds with a
possibly directed path i ∗−−∗ k in P . The subwalk of π
between k and j is an inducing walk in G between k and
j that is both into k and into j, since each collider on it
is ancestor of j and each non-endpoint non-collider only
points to nodes in the same strongly connected compo-
nent. Since k ∈ ANG(j), this corresponds with a possi-
bly directed path k ∗−−∗ j in P . It also implies that P∗,
obtained from P by replacing the edge between k and j
by the directed edge k → j, contains G. By Lemma 2
applied to P∗, k → j cannot be definitely visible in P∗.
We have arrived at a contradiction with the assumption.

Hence, the inducing walk π cannot contain any colliders.
If it consisted of multiple edges, it would be of the form
i → k′ → · · · → j, where now k′ 6= j is the vertex
on π next to i, and all non-endpoint noncolliders would
point to nodes in the same strongly connected compo-
nent. Hence k′ and j would lie in the same strongly
connected component of G. Again, note that this results
in a possibly directed path i ∗−−∗ k′ ∗−−∗ j in P , and
means thatP∗ obtained fromP by replacing the edge be-
tween k′ and j by the directed edge→ j, contains G. By
Lemma 2 applied to P∗, there exists no inducing walk in
G between k′ and j that is into k′, because k′ → j must
be definitely visible in P∗ by assumption. This contra-
dicts the existence of a directed path k′ ← · · · ← j in
G.

Hence, the inducing walk π in G must consist of a single
edge, and is necessarily of the form i→ j. �

Proposition 9 Let G be a DMG and denote by P =
PFCI(IMσ(G)) the corresponding complete DPAG out-
put by FCI. Let i 6= j be two nodes in P . If j ∈ SCG(i),
then i ◦−◦ j in P , and for all nodes k: k → i in P iff
k → j in P , and k ↔ i in P iff k ↔ j in P , and k ◦→ i
in P iff k ◦→ j in P .

Proof of Proposition 9 Since no pair of nodes within a
strongly connected component of G can be σ-separated,
each strongly connected component of G ends up as a
fully-connected component in P . For two nodes i 6= j
in the same strongly connected component of G, there
exists an acyclification of G in which i → j and another
one in which i← j, and hence the edge between i and j
in P must be oriented as i ◦−◦ j. From Lemma 4 it then
directly follows that for any third node k, k ∗→ i ∈ P if
and only if k ∗→ j ∈ P . If k ↔ i ∈ P , then k ◦→ j /∈ P ,



otherwise i ↔ k ◦→ j would violate Lemma 4. Also, if
k ↔ i ∈ P , then k → j /∈ P , otherwise k → j ◦−◦ i
would violate Lemma 4.

Hence, we have shown that for all i 6= j with i ∈ SCG(j),
i ◦−◦ j ∈ P and for all k:{

k ∗→ i ∈ P ⇐⇒ k ∗→ j ∈ P, and
k ↔ i ∈ P ⇐⇒ k ↔ j ∈ P.

(∗)

Note that this will already hold for the DPAG P̃ con-
structed by the first (arrowhead orientation) stage of FCI,
i.e., after rules R0–R4 of the FCI algorithm (the only
ones that can orient arrow heads) have been completed.
It remains to show that if k → i in P for a third node k,
then k → j in P as well (ruling out k ◦→ j). We will
consider all FCI rules that can orient a tail at k → i in the
absence of selection bias, i.e., FCI rules R1, R4a, R8a,
R9, and R10 in (Zhang, 2008b), and show that each of
them implies also a tail at k on the edge to j, i.e., k → j
(rulesR5–R7 andR8b can be ignored in the absence of
selection bias). Below we use P ′ to denote an intermedi-
ate DPAG obtained so far by FCI during the orientation
stage, which ultimately results in the completely oriented
DPAG P .

We will use the fact that there is a natural ordering in
these orientation rules: R1 and R4a are part of the ar-
rowhead orientation stage and complete first. Then, all
instances of R9 can be executed, after which R8a and
R10 are triggered repeatedly until completion. The lat-
ter follows from the fact that rules R8a (or R8b) and
R10 can only orient an edge x ◦→ y into x → y, which
can never introduce a new instance that satisfies the pat-
tern of R9 but did not already satisfy the pattern of R9
before. We will assume (without loss of generality) that
FCI makes use of this particular ordering in the proof
below.

Rule R1: if m ∗→ k ◦−−∗ i in P ′ and m and i are not
adjacent, then orient m ∗→ k → i. Suppose that k ◦−−∗ i
in P ′ can been oriented by R1. By (∗), this means that
k ∗→ j will be in P̃ . If k ◦→ j would have remained un-
oriented in P̃ , then by Lemma 4 applied tom ∗→ k ◦→ j,
there must be an edge m ∗→ j in P̃ . But then there must
also be an edge m ∗→ i in P̃ , again by Lemma 4. This
contradicts that m and i are not adjacent in P ′. Hence
k → j must have been oriented in P̃ .

Rule R4a: if π = 〈x,m1, . . . ,mn, k, i〉 is a discrimi-
nating path for k in P ′ and k ◦−−∗ i is in P ′, and if
k ∈ SepSet(x, i), then orient k → i. First note that j
cannot be part of the discriminating path π, as i ◦−◦ j
in P̃ . By (∗), all nodes ms and k also have an edge into
j in P̃ with either a tail or circle mark at the other end.
So we have x ∗→ m1 → j in P̃ or x ∗→ m1 ◦→ j

in P̃ . If x and j were adjacent in P̃ , then the edge
between them must be of the form x ∗→ j (either be-
cause of Lemma 4 if m1 ◦→ j, or because of FCI rule
R2b if m1 → j), which would imply that also x ∗→ i
in P̃ by (∗), contradicting the antecedent of rule R4a.
Now, by induction each edge between ms and j (for
s = 1, . . . , n) will have been oriented as ms → j in P̃ .
Indeed, first R1 can orient x ∗→ m1 → j, which means
that x ∗→ m1 ←∗ m2 ∗→ j is a discriminating path for
m2. Suppose x ∗→ m1(↔ . . .ms−1) ←∗ ms ∗−−∗ j
is a discriminating path for ms with s < n. Now
ms ↔ j cannot be in P̃ , because if it were, ms ↔ i
would also be in P̃ by (∗), contrary the antecedent of
R4a. Hence ms ∈ SepSet(x, j), and so the edge be-
tween ms and j can be oriented as ms → j by R4a,
which means that x ∗→ m1(↔ . . .ms) ←∗ ms+1 ∗−−∗ j
must be a discriminating path for ms+1. Hence, π′ =
〈x,m1, . . . ,mn, k, j〉 is also a discriminating path for k
in P̃ , and again k ↔ j cannot be in P̃ (otherwise k ↔ i
in P̃), and so the edge between k and j can be oriented
byR4a, resulting in k → j in P̃ .

Rule R9: if k ◦→ i in P ′, and π = 〈k,m1, . . . ,mn, i〉
is an uncovered possibly directed path in P ′ from k to i
such that m1 and i are not adjacent in P ′, then orient
k → i.

First note that all nodes on π must be ancestor in G of
i, and i must be non-ancestor in G of all other nodes on
π. Indeed, for any DMAGH contained in P ′, each node
ml must be a non-collider on π (all unshielded colliders
have already been oriented by rule R0 in P ′ by assump-
tion, and there cannot be any on π since π is possibly
directed). If ml → ml+1 in H, then there must be a di-
rected path ml → ml+1 → · · · → mn → i in H; if
ml → ml−1 in H, then there must be a directed path
ml → ml−1 → · · · → m1 → k → i in H. In both
cases, ml ∈ ANH(i), and i /∈ ANH(ml). Since this
holds for any DMAG H contained in P ′, it also holds
for all DMAGs induced by acyclifications of G. Hence,
by Proposition 3, ml ∈ ANG(i), and i /∈ ANG(ml). This
also implies (by the arrowhead completeness of FCI) that
there must be an arrowhead on the edge mn ∗→ i in P ′.

By (∗), k ∗→ j will be in P . Both m1 and mn−1 are
not adjacent to j in P . This follows from the fact that j
cannot be ancestor of either of these nodes m1,mn−1 in
G, for then i would also be ancestor in G of that node.
Therefore an edge between m1 (or mn−1) and j in P
would have to be into j by the arrowhead completeness
of FCI, and so by (∗) there would also be an edge m1 ∗→
i (or mn−1 ∗→ i) in P , contrary the antecedent of R9.
By (∗), also mn ∗→ j in P ′. This edge cannot be mn ↔
j, because that would mean that also mi ↔ i in P ′ by
(∗), a contradiction. Therefore π′ = 〈k,m1, . . . ,mn, j〉



is also an uncovered possibly directed path from k to j in
P ′, and m1 and j are not adjacent in P ′, so k ◦→ j can
be oriented as k → j byR9.

Finally, the two remaining rules, R8a and R10, will be
considered together in order to be able to make use of a
proof by induction. We will assume that in P ′, rulesR1,
R4a andR9 have already been exhaustively applied.

Rule R8a: if k ◦→ i and k → m → i in P ′, then orient
k → i.
Rule R10: if k ◦→ i and u1 → i ← u2 in P ′,
π1 = 〈k,m1, . . . , u1〉 is an uncovered possibly directed
path from k to u1 in P ′ and π2 = 〈k,m2, . . . , u2〉 is an
uncovered possibly directed path from k to u2 inP ′, such
thatm1 andm2 are distinct and not adjacent, then orient
k → i.

By (∗), if rule R8a triggers in P ′, then also k ∗→ j and
m ∗→ j in P . Furthermore, if rule R10 triggers in P ′,
then also k ∗→ j, u1 ∗→ j and u2 ∗→ j in P . As the
arrowhead stage has already completed by the time R8a
and R10 are executed, that means these will be present
as edges into j in P ′ as well.

We now proceed by contradiction. Assume, for the sake
of contradiction, thatR8a orR10 triggers to orient some
k ◦→ i in P ′ as k → i, but the corresponding edge k ◦→
j (with j ∈ SCG(i)) remains unoriented in P . Consider
the first edge k → i for which this situation occurs (in the
sequence of orientations performed by FCI during this
last part of the orientation phase).

If k ◦→ i can be oriented by rule R8a, then the edge
m → i is already present in P ′ at that point. If the tail
on that edge was oriented by one of the rules R1, R4a
or R9, also m → j will have been oriented in P ′ at this
point, as we have shown. Otherwise, the tail of m → i
must have been oriented by rule R8a or rule R10. By
assumption, the corresponding edge m ◦→ j does not
remain unoriented in P , and therefore after finitely many
applications of rulesR8a andR10, it will have been ori-
ented as m → j in P ′. In both cases, the edge m → j
will be present in P ′ at some point, and then rule R8a
can also be used to orient k ◦→ j as k → j, contradict-
ing the assumption that k ◦→ j remains unoriented in
P .

Hence k ◦→ imust have been oriented by ruleR10. The
edges u1 → i and u2 → i must then already be present
in P ′ at that point. By similar reasoning as before, we
conclude that also u1 → i and u2 → imust be present in
P ′ at some point, and then rule R10 can also be used to
orient k ◦→ j as k → j, again contradicting the assump-
tion.

Therefore, it cannot happen thatR8a orR10 can be used

to orient k ◦→ i as k → i, but that the corresponding
edge k ◦→ j (with j ∈ SCG(i)) will not get oriented as
k → j in P .

Summarizing, whenever FCI orients a tail mark at k on
an edge into i, it will also orient all tail marks at k on the
edges into j for all j ∈ SCG(i). �

Proposition 10 Let G be a DMG and denote by P =
PFCI(IMσ(G)) the corresponding complete DPAG out-
put by FCI. Let i 6= j be two nodes in P . If there is an
edge i ◦−◦ j in P , and all nodes k for which k ∗→ i is in
P also have an edge of the same type k ∗→ j (i.e., the two
edge marks at k are the same) in P , then there exists a
DMG G̃ with j ∈ SCG̃(i) that is σ-Markov equivalent to
G, but also a DMGH with j /∈ SCH(i) that is σ-Markov
equivalent to G.

Proof of Proposition 10 We first show that there is a
DMAG H that is σ-Markov equivalent to G which has
i→ j. We constructH by starting from the so-called ar-
rowhead augmented graph (Zhang, 2006) of P , in which
each edge x ◦→ y in P is oriented as x → y, followed
by an orientation of the remaining circle component into
an arbitrary DAG such that no unshielded colliders are
introduced. By Lemma 4.3.6 in (Zhang, 2006), this pro-
cedure yields a DMAG H in P (note that we assumed
no selection bias), and hence σ-Markov equivalent to
G. Orienting the circle component (which is chordal
by Lemma 4.3.7 in (Zhang, 2006)) can be achieved by
choosing i → j as the top two root nodes in the partial
ordering for the DAG, and propagating the Meek rules
(Meek, 1995a) to orient the rest of the circle component
into a DAG with no unshielded colliders (see also the
discussion of “Meek’s Algorithm” on pages 120–121 of
(Zhang, 2006)). The resulting DMAGH has no other ar-
rowheads at i and j other than the ones already present
in P , in combination with the directed edge i→ j.

We now create a DMG G̃ out of H by adding an addi-
tional edge j → i, thereby creating a single non-trivial
strongly connected component containing only the nodes
{i, j}. This follows from the fact that if there exists
another node in SCG̃(i) as a result of adding the edge
j → i to H, then there must now be a directed path
j → i → · · · → k → j in G̃. However, this edge k → j
cannot be part of the original circle component contain-
ing i ◦−◦ j in P , for then by construction it would have
been oriented as j → k, and if k → j was already an in-
variant arrowhead in P then by assumption there would
also be an invariant arrowhead on k ∗→ i in P , which
would imply the existence of an (almost) directed cycle
i → · · · → k in combination with k ∗→ i in the DMAG
H, which is impossible by definition.

As final step in the proof we show that the DMAG H



qualifies as an acyclification of G̃. By construction H is
a DMAG, and also an ADMG, with the same vertices as
G̃. Since j ∈ SCG̃(i) and i → j is in H, criterion (iii)
of Definition 3 is satisfied. Finally, note that for all other
nodes k /∈ SCG̃(i) by assumption, if k → i in P , then
k → j is also in P , and similarly for k ↔ i and k ↔ j,
resp. k ◦→ i and k ◦→ j. By the initial step of the con-
struction ofH as the arrowhead augmented DMAG of P ,
any edge k ◦→ i in P is oriented as k → i in H. As a
result, for any node k /∈ SCG̃(i), k → i in H iff k → j
in H, and similarly, k ↔ i in H iff k ↔ j in H. Since
{i, j} is the only non-trivial strongly connected compo-
nent in G̃, criterion (ii) of Definition 3 is also satisfied.
This proves that DMAGH indeed qualifies as an acycli-
fication of G̃.

This means that G̃ is σ-Markov equivalent to G, and
hence, both G̃ and H satisfy all properties promised in
the claim of the proposition. �

Theorem 2 Let Ψ be background knowledge that satis-
fies Assumption 1 and let Φ be a mapping from indepen-
dence models to DPAGs. Then:

(i) If Φ is sound for background knowledge Ψ under
the additional assumption of acyclicity, then Φ is
sound for background knowledge Ψ.

(ii) If Φ is arrowhead (tail) complete for background
knowledge Ψ under the additional assumption of
acyclicity, then Φ is arrowhead (tail) complete for
background knowledge Ψ.

(iii) If Φ is sound and arrowhead complete for back-
ground knowledge Ψ under the additional assump-
tion of acyclicity, then Φ is Markov complete.

Proof of Theorem 2 For a DMG G with Ψ(G) = 1,
define

acy(G,Ψ) := {G′ : G′ is an acyclification of G
and Ψ(G′) = 1}.

(i) Suppose that Φ is sound for background knowledge Ψ
under the additional assumption of acyclicity. Let G be a
DMG with Ψ(G) = 1 and let P := Φ(IMσ(G)). For any
G′ ∈ acy(G,Ψ), which is nonempty by Assumption 1(i),
P = Φ(IMσ(G′)) contains G′ by virtue of the acyclic
soundness of Φ under background knowledge Ψ. Hence,
two nodes u, v in P are adjacent if and only if there is
an inducing path between u and v in G′, and by Propo-
sition 3(iii), this holds if and only if there is an inducing
path between u and v in G. Further, u ∗→ v in P implies
v /∈ ANG′(u) for all G′ ∈ acy(G,Ψ), and hence by As-
sumption 1(ii), this implies v /∈ ANG(u). Finally, u→ v
in P implies u ∈ ANG′(v) for all G′ ∈ acy(G,Ψ), and
hence by Assumption 1(iii), this implies u ∈ ANG(v).

We conclude that Φ is sound for background knowledge
Ψ.

(ii) We give the proof for arrowhead completeness (tail
completeness is proved similarly). Suppose that Φ is
arrowhead complete for background knowledge Ψ un-
der the additional assumption of acyclicity. I.e., for
all ADMGs G′ with Ψ(G′) = 1, any ancestral relation
absent in any ADMG G̃′ with Ψ(G̃′) = 1 that is d-
Markov equivalent to G′, is oriented as an arrowhead
in Φ(IMd(G′)). Let G be a DMG with Ψ(G) = 1 and
let P := Φ(IMσ(G)). Let G′ ∈ acy(G,Ψ), which is
nonempty by Assumption 1(i). Assume that an ancestral
relation is absent in any DMG G̃ with Ψ(G̃) = 1 that is
σ-Markov equivalent to G. Then in particular, this ances-
tral relation is absent in any ADMG G̃′ with Ψ(G̃′) = 1
that is d-Markov equivalent to G′ (which is σ-Markov
equivalent to G). By the acyclic arrowhead completeness
of Φ under background knowledge Ψ, it must be oriented
as an arrowhead in Φ(IMd(G′)) = P . Hence Φ is arrow-
head complete for background knowledge Ψ.

(iii) Let G1 and G2 be two DMGs that satisfy the back-
ground knowledge, i.e., Ψ(G1) = Ψ(G2) = 1. We
have to show that if G1 and G2 are not σ-Markov equiv-
alent, then Φ(IMσ(G1)) 6= Φ(IMσ(G2)). By Assump-
tion 1(i), there exist acyclifications G′1 ∈ acy(G1,Ψ)
and G′2 ∈ acy(G2,Ψ). Proposition 2 implies both
IMσ(G1) = IMd(G′1) and IMσ(G2) = IMd(G′2). As-
sume that G1 and G2 are not σ-Markov equivalent. Then
their acyclifications G′1 and G′2 are not d-Markov equiv-
alent. By assumption, both acyclifications G′1,G′2 satisfy
the background knowledge, i.e., Ψ(G′1) = Ψ(G′2) = 1.

The induced DMAGs H1 := DMAG(G′1) and H2 :=
DMAG(G′2) cannot be d-Markov equivalent because the
induced DMAGs preserve the conditional independence
models. Therefore, by the result of Ali et al. (2009), H1

and H2 either have a different skeleton, or they have the
same skeleton but different colliders with order. If their
skeletons differ, then also Φ(IMd(G′1)) 6= Φ(IMd(G′2))
by the assumed soundness of Φ. If they do have the same
skeletons, there must be at least one collider with order in
H1 that is not a collider with order in H2, or vice versa.
By Lemma 3.13 in Ali et al. (2009), this would imply
that there is at least one collider with order in H1 that is
not a collider inH2, or vice versa.

Without loss of generality, assume that the former
holds. The assumed soundness and arrowhead com-
pleteness of Φ under the additional assumption of
acyclicity imply that this collider with order in H1 =
DMAG(G′1) will appear as a collider in Φ(IMd(G′1)).
Also, the soundness of Φ under the additional as-
sumption of acyclicity implies that this noncollider
in H2 cannot end up as a collider in Φ(IMd(G′2)).



Hence, Φ(IMd(G′1)) 6= Φ(IMd(G′2)), and therefore,
Φ(IMσ(G1)) 6= Φ(IMσ(G2)). �

Lemma 3 If subset {1}, {1, 2}, or {1, 2, 3} of the JCI
Assumptions holds for a DMG G, then the same subset of
assumptions holds for any acyclification of G.

Proof of Lemma 3 Let G′ be an acyclification of G. JCI
Assumption 1 implies that each strongly connected com-
ponent in G consists entirely of system variables or en-
tirely of context variables. Since in addition, G does not
have any directed edge from a system to a context vari-
able, there will not be any spurious directed edge in G′
from a system to a context variable. Hence also G′ sat-
isfies JCI Assumption 1. If G satisfies also JCI Assump-
tion 2, the acyclification G′ will not contain any spurious
bidirected edge between a context and a system variable.
Hence G′ satisfies JCI Assumptions 1 and 2 if G does so.
Finally, it is clear that JCI Assumption 3 holds for G′ if
JCI Assumptions 1 and 3 hold for G. �

Corollary 4 Let M be a simple (possibly cyclic) SCM
with graph G(M) and assume that its distribution
PM(X) is σ-faithful w.r.t. the graph G(M). When us-
ing consistent conditional independence tests on an i.i.d.
sample of observational data from the induced distribu-
tion PM(X) ofM, FCI provides a consistent estimate P̂
of the DPAG PFCI(IMσ(G(M))) that represents the σ-
Markov equivalence class of G(M). From the estimated
DPAG P̂ , we obtain consistent estimates for: (i) the ab-
sence/presence of (possibly indirect) causal relations ac-
cording toM via Propositions 4 and 5; (ii) the absence
of confounders according to M via Proposition 6; (iii)
the absence/presence of direct causal relations accord-
ing to M via Propositions 7 and 8; (iv) the absence of
causal cycles according toM via Proposition 9.

Proof of Corollary 4 In general, soundness of a
constraint-based causal discovery algorithm (i.e., the cor-
rectness of its output when given the true independence
model as input) implies consistency of the algorithm
when using appropriate conditional independence tests.
�

Proposition 12 Let G be a DMG that satisfies JCI As-
sumptions {1, 2, 3}. Let P = PFCIJCI(IMσ(G)) denote
the DPAG output by the corresponding version of FCI-
JCI. Let i ∈ K, j ∈ I. Then:

1. If i is not adjacent to j in P , i→ j is not in G.
2. If i → j in P , and for all system nodes k ∈ I s.t.
i → k in P and k ◦−◦ j or k ◦→ j or k → j in
P , the edge k → j is definitely visible in the DPAG
P∗ obtained from P by replacing the edge between
k and j by k → j, then i→ j is present in G.

Proof of Proposition 12 By Corollary 2, P contains G.
The first statement then follows directly from Proposi-
tion 7.

For the second statement, note first that there must be an
inducing walk π between i and j in G that is into j by
Lemma 1. We will show that any such inducing walk
cannot be into i. On the contrary, suppose that π would
be into i. Because of JCI Assumptions 1 and 2, the node
on π next to i cannot be in I but must be a context node in
K. Similarly, all subsequent nodes on the inducing path
(except for the final node j) must be collider nodes in K
because of JCI Assumptions 1, 2 and 3. But then the final
edge of π is between a context node and system node i
and into the context node, contradicting JCI Assumption
1 or 2.

The claim now follows from the second statement of
Proposition 8. �

Proposition 13 Let G be a DMG that satisfies JCI As-
sumptions {1, 2, 3}. Let P = PFCIJCI(IMσ(G)) denote
the complete DPAG output by the corresponding version
of FCI-JCI. Let i 6= j be two nodes in P . If j ∈ SCG(i),
then i ◦−◦ j in P , and for all nodes k 6= i, j: k → i in
P iff k → j in P , and k ↔ i in P iff k ↔ j in P , and
k ◦→ i in P iff k ◦→ j in P .

Proof of Proposition 13 We make use of a similar strat-
egy as in the proof of (Theorem 38 in Mooij et al., 2020),
which we will not repeat here. Proposition 9 applies
to the extended complete DPAG P∗ constructed in that
proof. Since strongly connected components can only
occur amongst the system variables, the same orienta-
tions will be found in the DPAG P output by FCI-JCI.
�
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