116 research outputs found

    Quadrupole Moments of Neutron-Deficient 20,21^{20, 21}Na

    Get PDF
    The electric-quadrupole coupling constant of the ground states of the proton drip line nucleus 20^{20}Na(IπI^{\pi} = 2+^{+}, T1/2T_{1/2} = 447.9 ms) and the neutron-deficient nucleus 21^{21}Na(IπI^{\pi} = 3/2+^{+}, T1/2T_{1/2} = 22.49 s) in a hexagonal ZnO single crystal were precisely measured to be eqQ/h=690±12|eqQ/h| = 690 \pm 12 kHz and 939 ±\pm 14 kHz, respectively, using the multi-frequency β\beta-ray detecting nuclear magnetic resonance technique under presence of an electric-quadrupole interaction. A electric-quadrupole coupling constant of 27^{27}Na in the ZnO crystal was also measured to be eqQ/h=48.4±3.8|eqQ/h| = 48.4 \pm 3.8 kHz. The electric-quadrupole moments were extracted as Q(20|Q(^{20}Na)| = 10.3 ±\pm 0.8 ee fm2^2 and Q(21|Q(^{21}Na)| = 14.0 ±\pm 1.1 ee fm2^2, using the electric-coupling constant of 27^{27}Na and the known quadrupole moment of this nucleus as references. The present results are well explained by shell-model calculations in the full sdsd-shell model space.Comment: Accepted for publication in Physics Letters

    Test of the Conserved Vector Current Hypothesis by beta-ray Angular Distribution Measurement in the Mass-8 System

    Full text link
    The beta-ray angular correlations for the spin alignments of 8Li and 8B have been observed in order to test the conserved vector current (CVC) hypothesis. The alignment correlation terms were combined with the known beta-alpha-angular correlation terms to determine all the matrix elements contributing to the correlation terms. The weak magnetism term, 7.5\pm0.2, deduced from the beta-ray correlation terms was consistent with the CVC prediction 7.3\pm0.2, deduced from the analog-gamma-decay measurement based on the CVC hypothesis. However, there was no consistent CVC prediction for the second-forbidden term associated with the weak vector current. The experimental value for the second-forbidden term was 1.0 \pm 0.3, while the CVC prediction was 0.1 \pm 0.4 or 2.1 \pm 0.5.Comment: 31 pages, 12 figures, Accepted for publication in Phys. Rev.

    Fast switching NMR system for measurements of ground-state quadrupole moments of short-lived nuclei

    Full text link
    A beta-ray detecting nuclear quadrupole resonance system has been developed at NSCL/MSU to measure ground-state electric quadrupole moments of short-lived nuclei produced as fast rare isotope beams. This system enables quick and sequential application of multiple transition frequencies over a wide range. Fast switching between variable capacitors in resonance circuits ensures sufficient power delivery to the coil in the beta-ray detecting nuclear magnetic resonance technique. The fast switching technique enhances detection efficiency of resonance signals and is especially useful when the polarization and/or production rate of the nucleus of interest are small and when the nuclear spin is large

    Sharpening Low-Energy, Standard-Model Tests via Correlation Coefficients in Neutron Beta-Decay

    Get PDF
    The correlation coefficients a, A, and B in neutron beta-decay are proportional to the ratio of the axial-vector to vector weak coupling constants, g_A/g_V, to leading recoil order. With the advent of the next generation of neutron decay experiments, the recoil-order corrections to these expressions become experimentally accessible, admitting a plurality of Standard Model (SM) tests. The measurement of both a and A, e.g., allows one to test the conserved-vector-current (CVC) hypothesis and to search for second-class currents (SCC) independently. The anticipated precision of these measurements suggests that the bounds on CVC violation and SCC from studies of nuclear beta-decay can be qualitatively bettered. Departures from SM expectations can be interpreted as evidence for non-V-A currents.Comment: 4 pages, REVTeX, intro. broadened, typos fixed, to appear in PR

    Deformed nuclear halos

    Get PDF
    Deformation properties of weakly bound nuclei are discussed in the deformed single-particle model. It is demonstrated that in the limit of a very small binding energy the valence particles in specific orbitals, characterized by a very small projection of single-particle angular momentum onto the symmetry axis of a nucleus, can give rise to the halo structure which is completely decoupled from the rest of the system. The quadrupole deformation of the resulting halo is completely determined by the intrinsic structure of a weakly bound orbital, irrespective of the shape of the core.Comment: LaTeX source (21 pages) and postscript file with figures (15 pages). Accepted to Nucl. Phys.

    Beta-delayed proton emission in the 100Sn region

    Full text link
    Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System (BCS) in conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing, 98Inm and 99In were identified as beta-delayed proton emitters, with branching ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for 89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9 -1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bp values on the composition of the type-I X-ray burst ashes was studied.Comment: 15 pages, 14 Figures, 4 Table

    E2 properties of nuclei far from stability and the proton-halo problem of 8B

    Full text link
    E2 properties of A=6--10 nuclei, including those of nuclei far from stability, are studied by a (0+2)ω(0+2)\hbar\omega shell-model calculation which includes E2 core-polarization effects explicitly. The quadrupole moments and the E2 transition strengths in A=6--10 nuclei are described quite well by the present calculation. This result indicates that the relatively large value of the quadrupole moment of 8^8B can be understood without introducing the proton-halo in 8^8B. An interesting effect of the 2ω2\hbar\omega core-polarization is found for effective charges used in the 0ω0\hbar\omega shell model; although isoscalar effective-charges are almost constant as a function of nucleus, appreciable variations are needed for isovector effective-charges which play important roles in nuclei with high isospin-values.Comment: (LaTeX, 23 pages
    corecore