40 research outputs found
Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes
Various studies report substantial increases in intrinsic water-use efficiency (Wi), estimated using carbon isotopes in tree rings, suggesting trees are gaining increasingly more carbon per unit water lost due to increases in atmospheric CO2. Usually, reconstructions do not, however, correct for the effect of intrinsic developmental changes in Wi as trees grow larger. Here we show, by comparingWi across varying tree sizes at one CO2 level, that ignoring such developmental effects can severely affect inferences of trees' Wi. Wi doubled or even tripled over a trees' lifespan in three broadleaf species due to changes in tree height and light availability alone, and there are also weak trends for Pine trees. Developmental trends in broadleaf species are as large as the trends previously assigned to CO2 and climate. Credible future tree ring isotope studies require explicit accounting for species-specific developmental effects before CO2 and climate effects are inferred.Peer reviewe
A general modeling and visualization tool for comparing different members of a group: application to studying tau-mediated regulation of microtubule dynamics
<p>Abstract</p> <p>Background</p> <p>Innumerable biological investigations require comparing collections of molecules, cells or organisms to one another with respect to one or more of their properties. Almost all of these comparisons are performed manually, which can be susceptible to inadvertent bias as well as miss subtle effects. The development and application of computer-assisted analytical and interpretive tools could help address these issues and thereby dramatically improve these investigations.</p> <p>Results</p> <p>We have developed novel computer-assisted analytical and interpretive tools and applied them to recent studies examining the ability of 3-repeat and 4-repeat tau to regulate the dynamic behavior of microtubules in vitro. More specifically, we have developed an automated and objective method to define growth, shortening and attenuation events from real time videos of dynamic microtubules, and demonstrated its validity by comparing it to manually assessed data. Additionally, we have used the same data to develop a general strategy of building different models of interest, computing appropriate dissimilarity functions to compare them, and embedding them on a two-dimensional plot for visualization and easy comparison. Application of these methods to assess microtubule growth rates and growth rate distributions established the validity of the embedding procedure and revealed non-linearity in the relationship between the tau:tubulin molar ratio and growth rate distribution.</p> <p>Conclusion</p> <p>This work addresses the need of the biological community for rigorously quantitative and generally applicable computational tools for comparative studies. The two-dimensional embedding method retains the inherent structure of the data, and yet markedly simplifies comparison between models and parameters of different samples. Most notably, even in cases where numerous parameters exist by which to compare the different samples, our embedding procedure provides a generally applicable computational strategy to detect subtle relationships between different molecules or conditions that might otherwise escape manual analyses.</p
An Automata Approach to Pattern Collections
Condensed representations of pattern collections have been recognized to be important building blocks of inductive databases, a promising theoretical framework for data mining, and recently they have been studied actively. However, there has not been much research on how condensed representations should actually be represented. In this paper we study how..
Solar superstorm of AD 774 recorded subannually by Arctic tree rings
Correction: Nature communications 10, article number: 1292 (2019) DOI: 10.1038/s41467-019-09214-wRecently, a rapid increase in radiocarbon (14C) was observed in Japanese tree rings at AD 774/775. Various explanations for the anomaly have been offered, such as a supernova, a γ-ray burst, a cometary impact, or an exceptionally large Solar Particle Event (SPE). However, evidence of the origin and exact timing of the event remains incomplete. In particular, a key issue of latitudinal dependence of the 14C intensity has not been addressed yet. Here, we show that the event was most likely caused by the Sun and occurred during the spring of AD 774. Particularly, the event intensities from various locations show a strong correlation with the latitude, demonstrating a particle-induced 14C poleward increase, in accord with the solar origin of the event. Furthermore, both annual 14C data and carbon cycle modelling, and separate earlywood and latewood 14C measurements, confine the photosynthetic carbon fixation to around the midsummer.Recently, a rapid increase in radiocarbon (C-14) was observed in Japanese tree rings at AD 774/775. Various explanations for the anomaly have been offered, such as a supernova, a gamma-ray burst, a cometary impact, or an exceptionally large Solar Particle Event (SPE). However, evidence of the origin and exact timing of the event remains incomplete. In particular, a key issue of latitudinal dependence of the C-14 intensity has not been addressed yet. Here, we show that the event was most likely caused by the Sun and occurred during the spring of AD 774. Particularly, the event intensities from various locations show a strong correlation with the latitude, demonstrating a particle-induced C-14 poleward increase, in accord with the solar origin of the event. Furthermore, both annual C-14 data and carbon cycle modelling, and separate earlywood and latewood C-14 measurements, confine the photosynthetic carbon fixation to around the midsummer.Peer reviewe