413 research outputs found
RELATIONSHIP OF SHOE IMPACT, BRAKING AND PROPULSIVE FORCE
INTRODUCTION -Van Mechelen (1992) reported that runners having no preference for shoe brand sustained significantly fewer injuries This work aimed to investigate the influence of shoe type on ground reaction force during jogging. Ground reaction forces (vertical, anterior-posterior, mediolateral) were measured as the subjects right foot struck a 9581 Kistler force platform mounted in an outdoor profiex artificial track surface. Forces were sampled and stored using Orthodata Provec software running on a Viglen 386 computer system. Twelve sports students, six male (age 20.17 ±0.75 years; height 180 ±0,07m; weight 81.2 ± 7.0Kg (mean ±S.D)) and six female (age 19.7 ± 0.52 years; height 1.58 ± 0.15m; weight 61.0 ± 8.2Kg (mean ±S,D.)) were the subjects of the study. Following shoe habituation subjects jogged at preferred pace naturally in mild, dry conditions across the platform at least five consecutive times wearing each pair of shoes. Males wore 6 new pairs of shoes (Adidas Response Lite; Adidas Torsion Advance; Tech Performance; Puma Disc system TX4000; Puma Viento; Mizuno Mondo Elite) and females four pairs of shoes (Adidas Response Lite; Adidas Lady Tech Performance; Puma T-400; Puma liberte 11) in an individual random order. Jogging speeds were measured using infrared timing devices positioned 1m before and 1m after the force platform. Peak Forces were read subsequently from the computer screen using cursor measurement to locate peak forces. Following initial evaluation analysis was focused on the vertical and anterior-posterior torees. Mean peak vertical impact and maximal forces, mean peak braking and propulsive forces were expressed relative to each subject's body weight (BW), RESULTS -For the male subjects the mean peak vertical force range for alt shoes was 2.9 -3,OBW, impact force 2,5 -2.8BW, braking 0.62 -0.70BW, and propulsive OAO -OA4BW. For the females the mean peak range was vertical force 2.75 -2.78BW, impact force 2.1 -2.5BW, braking 0.57 -0.59BW, and propulsive 0.37 -0.41 BW. In both the male and female subjects a low mean peak braking force and low mean peak vertical impact force was associated with a high mean peak propulsive force (male: Adidas Tech Performance Braking 0.616BW, Impact 2.531 BW, Propulsive OA43BW; female: Adidas Response Lite Braking 0.572BW, Impact 2.072BW, Propulsive OA09BW). Similarly a high mean peak braking force and high mean peak impact force was associated with a low mean peak propulsive force (male: Puma Disc system TX4000 Braking 0.700BW, Impact 2.768BW, Propulsive OA02BW; female: Adidas Lady Tech Performance Braking 0.591 BW, Impact 2A82BW, Propulsive 0 379BW). Differences were significant (P < 005) CONCLUSION -For two shoe designs the existence of a lower vertical impact force and low braking force is associated with greater propulsive force
The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review
It is well established that acute moderate-intensity exercise improves cognitive performance. However, the effects of acute high-intensity aerobic exercise on cognitive performance have not been well characterized. In this review, we summarize the literature investigating the exercise-cognition interaction, especially focusing on high-intensity aerobic exercise. We discuss methodological and physiological factors that potentially mediate cognitive performance in response to high-intensity exercise. We propose that the effects of high-intensity exercise on cognitive performance are primarily affected by the timing of cognitive task (during vs. after exercise, and the time delay after exercise). In particular, cognitive performance is more likely to be impaired during high-intensity exercise when both cognitive and physiological demands are high and completed simultaneously (i.e., the dual-task paradigm). The effects may also be affected by the type of cognitive task, physical fitness, exercise mode/duration, and age. Second, we suggest that interactions between changes in regional cerebral blood flow (CBF), cerebral oxygenation, cerebral metabolism, neuromodulation by neurotransmitters/neurotrophic factors, and a variety of psychological factors are promising candidates that determine cognitive performance in response to acute high-intensity exercise. The present review has implications for recreational, sporting, and occupational activities where high cognitive and physiological demands are required to be completed concurrently
The effect of differing intensities of acute cycling on preadolescent academic achievement
The present study examined the effects of differing intensity levels of acute exercise on preadolescent academic ability. In a repeated measures design, 18 preadolescent participants (mean age±S.D.=9.8±1.4 years: 9 male and 9 female) completed the Wide Range Achievement Test (WRAT 4) following 20 minutes of rest, 20-minutes on a cycling ergometer at 50% maximal heart rate reserve (HRR), and 20-minutes on a cycling ergometer at 75% HRR on separate days. Exercise was found to improve spelling irrespective of intensity level. Moderate levels of exercise improved reading although the effect of high levels of intensity is less clear. Both intensity levels impaired arithmetic, whilst sentence comprehension was unaffected. These findings further support the past research that indicates acute bouts of exercise can selectively improve cognition in preadolescent children. However, the present study finds no support for the notion that increasing the intensity of exercise accentuates benefits. © 2013 © 2013 European College of Sport Science
Cognitive performance is associated with cerebral oxygenation and peripheral oxygen saturation, but not plasma catecholamines, during graded normobaric hypoxia
What is the central question of this study? What are the mechanisms responsible for the decline in cognitive performance following exposure to acute normobaric hypoxia? What are the main findings and their importance? We found that 1) performance of a complex central executive task (n-back) was reduced FiO 0.12; 2) there was a strong correlation between performance of the n-back task and reductions in SpO and cerebral oxygenation; and 3) plasma adrenaline, noradrenaline, cortisol, and copeptin were not correlated with cognitive performance. It is well established that hypoxia impairs cognitive function; however, the physiological mechanisms responsible for these effects have received relatively little attention. This study examined the effects of graded reductions in fraction of inspired oxygen (FiO ) on oxygen saturation (SpO ), cerebral oxygenation, cardiorespiratory variables, activity of the sympathoadrenal system (adrenaline, noradrenaline) and hypothalamic-pituitary-adrenal axis (cortisol, copeptin), and cognitive performance. Twelve healthy males (mean [SD], age: 22 [4] yrs, height: 178 [5] cm, mass: 75 [9] kg, FEV /FVC ratio: 85 [5] %) completed a 4-task battery of cognitive tests to examine inhibition, selective attention (Eriksen Flanker), executive function (n-back) and simple and choice reaction time (Deary-Liewald). Tests were completed before and following 60 minutes of exposure to FiO 0.2093, 0.17, 0.145, and 0.12. Following 60 minutes of exposure response accuracy in the n-back task was significantly reduced in FiO 0.12 compared to baseline (82 [9] vs. 93 [5] %; p < 0.001) and compared to all other conditions at the same time point (FiO 0.2093: 92 [3] %, FiO 0.17: 91 [6] %, FiO 0.145: 85 [10] %, FiO 12: 82 [9] %; all p < 0.05). The performance of the other tasks was maintained. Δ accuracy and Δ reaction time of the n-back task was correlated with both Δ SpO (r (9) = 0.66; p < 0.001 and r (9) = - 0.36; p = 0.037 respectively) and Δ cerebral oxygenation (r (7) = 0.55; p < 0.001 and r (7) = - 0.38; p = 0.045 respectively). Plasma adrenaline, noradrenaline, cortisol and copeptin were not significantly elevated in any condition or correlated with any of the tests of cognitive performance. These findings suggest that reductions in peripheral oxygen saturation and cerebral oxygenation, and not increased activity of the sympathoadrenal system and hypothalamic-pituitary-adrenal axis, as previously speculated, are responsible for a decrease in cognitive performance during normobaric hypoxia
Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study
Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists
Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation - a randomized placebo-controlled trial
<p>Abstract</p> <p>Background</p> <p>We investigated the effects of sleep deprivation with or without acute supplementation of caffeine or creatine on the execution of a repeated rugby passing skill.</p> <p>Method</p> <p>Ten elite rugby players completed 10 trials on a simple rugby passing skill test (20 repeats per trial), following a period of familiarisation. The players had between 7-9 h sleep on 5 of these trials and between 3-5 h sleep (deprivation) on the other 5. At a time of 1.5 h before each trial, they undertook administration of either: placebo tablets, 50 or 100 mg/kg creatine, 1 or 5 mg/kg caffeine. Saliva was collected before each trial and assayed for salivary free cortisol and testosterone.</p> <p>Results</p> <p>Sleep deprivation with placebo application resulted in a significant fall in skill performance accuracy on both the dominant and non-dominant passing sides (p < 0.001). No fall in skill performance was seen with caffeine doses of 1 or 5 mg/kg, and the two doses were not significantly different in effect. Similarly, no deficit was seen with creatine administration at 50 or 100 mg/kg and the performance effects were not significantly different. Salivary testosterone was not affected by sleep deprivation, but trended higher with the 100 mg/kg creatine dose, compared to the placebo treatment (p = 0.067). Salivary cortisol was elevated (p = 0.001) with the 5 mg/kg dose of caffeine (vs. placebo).</p> <p>Conclusion</p> <p>Acute sleep deprivation affects performance of a simple repeat skill in elite athletes and this was ameliorated by a single dose of either caffeine or creatine. Acute creatine use may help to alleviate decrements in skill performance in situations of sleep deprivation, such as transmeridian travel, and caffeine at low doses appears as efficacious as higher doses, at alleviating sleep deprivation deficits in athletes with a history of low caffeine use. Both options are without the side effects of higher dose caffeine use.</p
Alterations in cognitive performance during passive hyperthermia are task dependent
The objectives of this study were to (1) assess the effect of passive heating upon attention and memory task performance, and (2) evaluate the effectiveness of the application of cold packs to the head on preserving these functions. Using a counterbalance design 16 subjects underwent three trials: a control (CON, 20°C, 40% rH), hot (HOT, 50°C, 50% rH) and hot with the head kept cool (HHC). In each condition, three attention tests and two memory tests were performed. Mean core, forehead and tympanic temperatures were all significantly higher (p< 0.05) during HOT (38.6° ±0.1°, 39.6° ±0.2° and 38.8°±0.1°C, respectively) and HHC (38°±0.2, 37.7°±0.3° and 37.7°C, respectively) than in CON (37.1°±0.6°, 33.3° ±0.2° and 35.9°±0.3°C, respectively). Results indicate that there was impairment in working memory with heat exposure (p < 0.05) without alteration in attentional processes. The regular application of cold packs only prevented the detrimental effect of hyperthermia on short-term memory. Our results show that impairments in cognitive function with passive hyperthermia and the beneficial effect of head cooling are task dependent and suggests that exposure to a hot environment is a competing variable to the cognitive processes
- …