2,935 research outputs found

    Photo-z Performance for Precision Cosmology II : Empirical Verification

    Full text link
    The success of future large scale weak lensing surveys will critically depend on the accurate estimation of photometric redshifts of very large samples of galaxies. This in turn depends on both the quality of the photometric data and the photo-z estimators. In a previous study, (Bordoloi et al. 2010) we focussed primarily on the impact of photometric quality on photo-z estimates and on the development of novel techniques to construct the N(z) of tomographic bins at the high level of precision required for precision cosmology, as well as the correction of issues such as imprecise corrections for Galactic reddening. We used the same set of templates to generate the simulated photometry as were then used in the photo-z code, thereby removing any effects of "template error". In this work we now include the effects of "template error" by generating simulated photometric data set from actual COSMOS photometry. We use the trick of simulating redder photometry of galaxies at higher redshifts by using a bluer set of passbands on low z galaxies with known redshifts. We find that "template error" is a rather small factor in photo-z performance, at the photometric precision and filter complement expected for all-sky surveys. With only a small sub-set of training galaxies with spectroscopic redshifts, it is in principle possible to construct tomographic redshift bins whose mean redshift is known, from photo-z alone, to the required accuracy of 0.002(1+z).Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Evolution of field early-type galaxies: The view from GOODS CDFS

    Get PDF
    We explore the evolution of field early-type galaxies in a sample extracted from the ACS images of the southern GOODS field. The galaxies are selected by means of a nonparametric analysis, followed by visual inspection of the candidates with a concentrated surface brightness distribution. We furthermore exclude from the final sample those galaxies that are not consistent with an evolution into the Kormendy relation between surface brightness and size that is observed for z = 0 ellipticals. The final set, which comprises 249 galaxies with a median redshift z(m) = 0.71, represents a sample of early-type systems not selected with respect to color, with similar scaling relations as those of bona fide elliptical galaxies. The distribution of number counts versus apparent magnitude rejects a constant number density with cosmic time and suggests a substantial decrease with redshift: n proportional to (1 + z)(-2.5). The majority of the galaxies (78%) feature passively evolving old stellar populations. One-third of those in the upper half of the redshift distribution have blue colors, in contrast to only 10% in the lower redshift subsample. An adaptive binning of the color maps using an optimal Voronoi tessellation is performed to explore the internal color distribution. We find that the red and blue early-type galaxies in our sample have distinct behavior with respect to the color gradients, so that most blue galaxies feature blue cores whereas most of the red early-types are passively evolving stellar populations with red cores, i.e., similar systems to local early-type galaxies. Furthermore, the color gradients and scatter do not evolve with redshift and are compatible with the observations at z 0, assuming a radial dependence of the metallicity within each galaxy. Significant gradients in the stellar age are readily ruled out. This work emphasizes the need for a careful sample selection, as we found that most of those galaxies that were visually classified as candidate early types-but then rejected based on the Kormendy relation-feature blue colors characteristic of recent star formation

    An Investigation of Orientational Symmetry-Breaking Mechanisms in High Landau Levels

    Get PDF
    The principal axes of the recently discovered anisotropic phases of 2D electron systems at high Landau level occupancy are consistently oriented relative to the crystal axes of the host semiconductor. The nature of the native rotational symmetry breaking field responsible for this preferential orientation remains unknown. Here we report on experiments designed to investigate the origin and magnitude of this symmetry breaking field. Our results suggest that neither micron-scale surface roughness features nor the precise symmetry of the quantum well potential confining the 2D system are important factors. By combining tilted field transport measurements with detailed self-consistent calculations we estimate that the native anisotropy energy, whatever its origin, is typically ~ 1 mK per electron.Comment: Reference added, minor notational changes; final published versio

    ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy

    Full text link
    We introduce Zurich Atmosphere Purge (ZAP), an approach to sky subtraction based on principal component analysis (PCA) that we have developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. Extensive testing shows that ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources. The method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations the method is generally applicable to many different science cases and should also be useful for other instrumentation. ZAP is available for download at http://muse-vlt.eu/science/tools.Comment: 12 pages, 7 figures, 1 table. Accepted to MNRA

    High spatial resolution observations of CUDSS14A: a SCUBA-selected ultraluminous galaxy at high redshift

    Get PDF
    The definitive version is available at www.blackwell-synergy.com '. Copyright Blackwell Publishing DOI : 10.1046/j.1365-8711.2000.03822.xWe present a high-resolutionmillimetre interferometric image of the brightest SCUBA- selected galaxy from the Canada-UK deep SCUBA survey (CUDSS). We make a very clear detection at 1.3 mm, but fail to resolve any structure in the source.Peer reviewe

    Poly Drop

    Get PDF
    Poly Drop is a software interface to control an Open Drop digital micro-fluidics system. We obtained a hardware system from Gaudi labs. Our task was to create a Graphical User Interface that made the control of the device easier and more automated for better testing. We created software that had 3 parts: a control GUI, arduino code to control the hardware, and Image Analysis that gives the user information such as location and color of liquid drops as they move across the electrode grid of the Open Drop system. The GUI was developed using Java Swing. The communication between the GUI and the arduino was accomplished using the open source RXTX library. The image analysis portion was created using the open source OpenCV software

    Rapid generation of angular momentum in bounded magnetized plasma

    Full text link
    Direct numerical simulations of two-dimensional decaying MHD turbulence in bounded domains show the rapid generation of angular momentum in nonaxisymmetric geometries. It is found that magnetic fluctuations enhance this mechanism. On a larger time scale, the generation of a magnetic angular momentum, or angular field, is observed. For axisymmetric geometries, the generation of angular momentum is absent; nevertheless, a weak magnetic field can be observed. The derived evolution equations for both the angular momentum and angular field yield possible explanations for the observed behavior

    The Onset of Anisotropic Transport of Two-Dimensional Electrons in High Landau Levels: An Isotropic-to-Nematic Liquid Crystal Phase Transition?

    Get PDF
    The recently discovered anisotropy of the longitudinal resistance of two-dimensional electrons near half filling of high Landau levels is found to persist to much higher temperatures T when a large in-plane magnetic field B|| is applied. Under these conditions we find that the longitudinal resistivity scales quasi-linearly with B||/T. These observations support the notion that the onset of anisotropy at B||=0 does not reflect the spontaneous development of charge density modulations but may instead signal an isotropic-to-nematic liquid crystal phase transition.Comment: 5 pages, 4 figure

    The Subillimeter Properties of Extremely Red Objects in the CUDSS Fields

    Full text link
    We discuss the submillimeter properties of Extremely Red Objects (EROs) in the two Canada-UK Deep Submillimeter Survey (CUDSS) Fields. We measure the mean submillimeter flux of the ERO population (to K < 20.7) and find 0.4 +/- 0.07 mJy for EROs selected by (I-K) > 4.0 and 0.56 +/- 0.09 mJy for EROs selected by (R-K) > 5.3 but, these measurements are dominated by discrete, bright submillimeter sources. We estimate that EROs produce 7-11% of the far-infrared background at 850um. This is substantially less than a previous measurement by Wehner, Barger & Kneib (2002) and we discuss possible reasons for this discrepancy. We show that ERO counterparts to bright submillimeter sources lie within the starburst region of the near-infrared color-color plot of Pozzetti & Mannucci (2000). Finally, we claim that pairs or small groups of EROs with separations of < 10 arcseconds often mark regions of strong submillimeter flux.Comment: 9 pages, 8 figures, accepted for publication in Ap
    corecore